Abstract:
The present disclosure relates generally to the field of batteries and battery modules, and more specifically, relates to a system and method for manufacturing terminal assemblies for lithium-ion battery modules. A disclosed battery module includes a terminal block assembly that is secured to a polymer housing of the battery module. The terminal block assembly includes a terminal post having a post portion and a base portion that extends outward from a central axis of the post portion. The terminal block assembly also includes a bus bar coupled to the base portion of the terminal post without welding, wherein the bus bar includes a trough disposed near the terminal post. The terminal block assembly further includes a polymer portion overmolding at least the trough of the bus bar to form a drainage channel near the terminal post.
Abstract:
The present disclosure relates to a battery module that includes a stack of battery cells, where each battery cell has a terminal, and the terminal has a first alloy of a metal. The battery module has a bus bar that includes a body having a second alloy of the metal, nickel plating on at least a portion of the body, and an indentation disposed on the body, where a thickness of the nickel plating is between 0.2% and 20% of an overall thickness of the body, and a weld physically and electrically coupling the respective terminal to the bus bar. The indentation has a depth between 10% and 90% of the overall thickness, an area of the indentation is between 5% and 20% of an overall area of the body, and the nickel plating enables the weld to be stronger than a weld between the first and second alloys.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.
Abstract:
The present disclosure relates generally to a welding process for a battery module. In an embodiment, a system for welding two components in a battery module includes a laser source configured to emit a laser beam onto a workpiece having a first battery module component and a second battery module component. The system also has an actuator coupled to the laser source and configured to move the laser beam along a first axis and a second axis and a controller electrically coupled to the laser source and the actuator. The controller is configured to send a signal to the laser source and the actuator to form a sinusoidal lap weld on a surface of the workpiece, such that the first battery module component is electrically coupled to the second battery module component.
Abstract:
A battery module includes a housing and battery cells disposed in the housing, each of the battery cells including two terminals. The battery module also includes bus bar cell interconnects including a first material, where each bus bar cell interconnect is configured to electrically couple two adjacent battery cells via an electrical coupling with a first terminal of one of the adjacent battery cells and a second terminal of the other adjacent battery cell, where at least one of the first and second terminals includes the first material. The battery module includes welds, each weld being disposed at a corresponding welding point to directly couple one of the bus bar cell interconnects with the corresponding at least one terminal including the first material. Each welding point is accessible for welding from a position above the battery cells when the interconnects are disposed over the battery cells.
Abstract:
A battery module includes a terminal block assembly having an electrical assembly and a plastic base. The electrical assembly includes a terminal post and a bus bar coupled with the terminal post. A portion of the electrical assembly is overmolded by the plastic base, and the portion includes at least part of a terminal post base that extends outward from a central axis of a post portion of the terminal post. The battery module also includes a plastic housing having a receptacle configured to receive the plastic base of the terminal block assembly.
Abstract:
A battery module includes a housing and battery cells disposed in the housing, each of the battery cells including two terminals. The battery module also includes bus bar cell interconnects including a first material, where each bus bar cell interconnect is configured to electrically couple two adjacent battery cells via an electrical coupling with a first terminal of one of the adjacent battery cells and a second terminal of the other adjacent battery cell, where at least one of the first and second terminals includes the first material. The battery module includes welds, each weld being disposed at a corresponding welding point to directly couple one of the bus bar cell interconnects with the corresponding at least one terminal including the first material. Each welding point is accessible for welding from a position above the battery cells when the interconnects are disposed over the battery cells.
Abstract:
A battery module includes a housing and battery cells disposed in the housing, each of the battery cells including two terminals. The battery module also includes bus bar cell interconnects including a first material, where each bus bar cell interconnect is configured to electrically couple two adjacent battery cells via an electrical coupling with a first terminal of one of the adjacent battery cells and a second terminal of the other adjacent battery cell, where at least one of the first and second terminals includes the first material. The battery module includes welds, each weld being disposed at a corresponding welding point to directly couple one of the bus bar cell interconnects with the corresponding at least one terminal including the first material. Each welding point is accessible for welding from a position above the battery cells when the interconnects are disposed over the battery cells.
Abstract:
The present disclosure includes a battery module having a housing with a cell receptacle region defined by walls of the housing and configured to enable passage of electrochemical cells therethrough. The battery module also includes a bus bar carrier sealed in the cell receptacle region. The bus bar carrier includes a perimeter having flexible ribs extending along at least a majority of the perimeter and configured to enable intimate contact between the walls of the housing and the perimeter of the bus bar carrier.
Abstract:
A battery module includes a terminal block assembly having an electrical assembly and a plastic base. The electrical assembly includes a terminal post and a bus bar coupled with the terminal post. A portion of the electrical assembly is overmolded by the plastic base, and the portion includes at least part of a terminal post base that extends outward from a central axis of a post portion of the terminal post. The battery module also includes a plastic housing having a receptacle configured to receive the plastic base of the terminal block assembly.