摘要:
A linearized optical sampler is described. The optical sampler includes an electro-optic modulator having an optical signal input, an electrical signal input, and at least two optical signal outputs that generate at least two modulated optical signals. The optical sampler also includes at least two detectors each of which being optically coupled to a respective one of the at least two modulated optical signals. Each detector generates an electrical signal in response to an optical intensity of the respective one of the at least two modulated optical signals. The optical sampler also includes a signal processor electrically connected to each of the at least two detectors. The signal processor applies an inverse transform of the modulator transfer function. The signal processor also generates an electrical signal from the electrical signals generated by the detectors and from the inverse transform that is linearly related to an RF signal electrically that is coupled to the electrical signal input.
摘要:
A linearized optical sampler is described. The optical sampler includes an electro-optic modulator having an optical signal input, an electrical signal input, and at least two optical signal outputs that generate at least two modulated optical signals. The optical sampler also includes at least two detectors each of which being optically coupled to a respective one of the at least two modulated optical signals. Each detector generates an electrical signal in response to an optical intensity of the respective one of the at least two modulated optical signals. The optical sampler also includes a signal processor electrically connected to each of the at least two detectors. The signal processor applies an inverse transform of the modulator transfer function. The signal processor also generates an electrical signal from the electrical signals generated by the detectors and from the inverse transform that is linearly related to an RF signal electrically that is coupled to the electrical signal input.
摘要:
Improved field-emission devices are based on composing the back contact to the emitter material such that electron-injection efficiency into the emitter material is enhanced. Alteration of the emitter material structure near the contact or geometric field enhancement due to contact morphology gives rise to the improved injection efficiency. The devices are able to emit electrons at high current density and lower applied potential differences and temperatures than previously achieved. Wide-bandgap emitter materials without shallow donors benefit from this approach. The emission characteristics of diamond substitutionally doped with nitrogen, having a favorable emitter/vacuum band structure but being limited by the efficiency of electron injection into it, show especial improvement in the context of the invention. The injection-enhancing contacts can be created by combining the emitter material with an appropriate metal compound and annealing or by conventional dry anisotropic etching or ion bombardment techniques.
摘要:
The surface-emission cathodes of the invention are constructed so that the cathode body has a free surface over which electrons are efficiently accelerated after injection from a conductive contact. The junction between the free surface and the contact has the property that the height of the barrier to tunneling from the contact to floating surface states associated with the free surface of the cathode body is lower than both the barrier to emission from the contact to vacuum and the barrier to injection from the contact into the conduction band of the cathode body material. Thus under an applied potential, electrons are injected from the contact into floating surface states associated with the free surface. After acceleration, electrons leave the free surface, either emitted to vacuum or injected into another medium.
摘要:
A flat-panel display contains an emissive cathode structure and a generally flat encapsulating body that surrounds the cathode structure to form a sealed enclosure. The cathode structure contains electronegative atoms (22), which consist of oxygen and/or fluorine, chemically bonded to a carbon-containing cathode (10). Atoms (24R) of electropositive metal are chemically bonded to the electronegative atoms.
摘要:
A cathode structure contains electronegative atoms (22), which consist of oxygen and/or fluorine, chemically bonded to a carbon-containing cathode (10). Atoms (24R) of electropositive metal are chemically bonded to the electronegative atoms. The combination of the electropositive metal atoms and the electronegative atoms enhances the electron emissivity by reducing the work function.
摘要:
A charge-coupled device imager including an array of super pixels disposed in a semiconductor substrate having a surface that is accessible to incident illumination. For each super pixel there is provided a plurality of subpixels which each correspond to one in the sequence of image frames. Each subpixel includes a doped photogenerated charge collection channel region opposite the illumination-accessible substrate surface, a charge collection channel region control electrode, doped charge drain regions adjacent to the channel region, a charge drain region control electrode, and a doped charge collection control region. To each subpixel are provided channel region and drain region control voltage connections, for independent collection and storage of photogenerated charge from the substrate at the charge collection channel region of a selected subpixel during one in the sequence of image frames and for drainage of photogenerated charge from the substrate to a drain region.
摘要:
Fabrication of an electron-emitting device entails distributing electron-emissive carbon-containing particles (22) over a non-insulating region (12). The particles can be made electron emissive after the particle distributing step. Particle bonding material (24) is typically provided to bond the particles to the non-insulating region. The particle bonding material can include carbide formed by heating or/and can be created by modifying a layer (32) provided between the non-insulating region and the particles. In one embodiment, the particles emit electrons primarily from graphite or/and amorphous carbon regions. In another embodiment, the particles are made electron-emissive prior to the particle distributing step.
摘要:
In one electron-emitting device, non-insulating particle bonding material (24) securely bonds electron-emissive carbon-containing particles (22) to an underlying non-insulating region (12). The carbon in each carbon-containing particle is in the form of diamond, graphite, amorphous carbon, or/and silicon carbide. In another electron-emitting device, electron-emissive pillars (22/28) overlie a non-insulating region (12). Each pillar is formed with an electron-emissive particle (22) and an underlying non-insulating pedestal (28).
摘要:
Improved field-emission devices are based on composing the back contact to the emitter material such that electron-injection efficiency into the emitter material is enhanced. Alteration of the emitter material structure near the contact or geometric field enhancement due to contact morphology gives rise to the improved injection efficiency. The devices are able to emit electrons at high current density and lower applied potential differences and temperatures than previously achieved. Wide-bandgap emitter materials without shallow donors benefit from this approach. The emission characteristics of diamond substitutionally doped with nitrogen, having a favorable emitter/vacuum band structure but being limited by the efficiency of electron injection into it, show especial improvement in the context of the invention. The injection-enhancing contacts can be created by combining the emitter material with an appropriate metal compound and annealing or by conventional dry anisotropic etching or ion bombardment techniques.