摘要:
A tunnel insulating layer and a charge storage layer are sequentially stacked on a substrate. A recess region penetrates the charge storage layer, the tunnel insulating layer and a portion of the substrate. The recess region is defined by a bottom surface and a side surface extending from the bottom surface. A first dielectric pattern includes a bottom portion covering the bottom surface and inner walls extending from the bottom portion and covering a portion of the side surface of the recess region. A second dielectric pattern is in the recess region between the inner walls of the first dielectric pattern, and the second dielectric pattern enclosing an air gap. The air gap that is enclosed by the second dielectric pattern may extend through a major portion of the second dielectric pattern in a direction away from the bottom surface of the recess region.
摘要:
A method for fabricating a semiconductor device includes forming a stacked structure on a substrate, forming a first interlayer dielectric covering the stacked structure, and forming a second interlayer dielectric covering the first interlayer dielectric. The stacked structure includes a stepwise shape. The first interlayer dielectric includes at least one step portion having a slope surface connecting a first top surface to a second top surface. The first top surface and the sloped surface define a first angle that is an obtuse angle. A level of the second top surface is higher than a level of the first top surface.
摘要:
Provided are semiconductor devices and methods of forming the same. A device isolation structure in the semiconductor device includes a gap region. A dielectric constant of a vacuum or an air in the gap region is smaller than a dielectric constant of an oxide layer and, as a result coupling and attendant interference between adjacent cells may be reduced.
摘要:
In a method of a vertical memory device, insulation layers and sacrificial layers are alternately and repeatedly formed on a substrate. A hole is formed through the insulation layers and the sacrificial layers that expose a top surface of the substrate. Then, an interior portion of the hole may be enlarged. A semiconductor pattern is formed to partially fill the enlarged portion of the hole. A blocking layer, a charge storage layer and a tunnel insulation layer may be formed on a sidewall of the hole and the semiconductor pattern. Then, the tunnel insulation layer, the charge storage layer and the blocking layer are partially removed to expose a top surface of the semiconductor pattern. A channel is formed on the exposed top surface of the semiconductor pattern and the tunnel insulation layer. The sacrificial layers are replaced with gate electrodes.
摘要:
In a method of a vertical memory device, insulation layers and sacrificial layers are alternately and repeatedly formed on a substrate. A hole is formed through the insulation layers and the sacrificial layers that expose a top surface of the substrate. Then, an interior portion of the hole may be enlarged. A semiconductor pattern is formed to partially fill the enlarged portion of the hole. A blocking layer, a charge storage layer and a tunnel insulation layer may be formed on a sidewall of the hole and the semiconductor pattern. Then, the tunnel insulation layer, the charge storage layer and the blocking layer are partially removed to expose a top surface of the semiconductor pattern. A channel is formed on the exposed top surface of the semiconductor pattern and the tunnel insulation layer. The sacrificial layers are replaced with gate electrodes.
摘要:
Provided are semiconductor devices and methods of forming the same. A device isolation structure in the semiconductor device includes a gap region. A dielectric constant of a vacuum or an air in the gap region is smaller than a dielectric constant of an oxide layer and, as a result coupling and attendant interference between adjacent cells may be reduced.
摘要:
Methods of forming vertical nonvolatile memory devices utilize carbon-blocking sacrificial capping layers to increase device yield by reducing the likelihood that one or more vertically-stacked layers of materials will lift-off during fabrication. These capping layers may be provided to cover carbon-containing sacrificial layers that are highly polymerized.
摘要:
Methods of forming vertical nonvolatile memory devices utilize carbon-blocking sacrificial capping layers to increase device yield by reducing the likelihood that one or more vertically-stacked layers of materials will lift-off during fabrication. These capping layers may be provided to cover carbon-containing sacrificial layers that are highly polymerized.
摘要:
In a method of forming an isolation layer, a plurality of trenches is formed on a substrate. A liner is formed on inner walls of the trenches. The liner is thermally oxidized to fill up some of the trenches. The other trenches are filled up with an insulation material. As a result, the isolation layer is free of voids.