摘要:
A gas-barrier heat-seal composite film is provided. The gas-barrier heat-seal composite film includes a heat-seal layer including very low density polyethylene (VLDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE), metallocene polyethylene (mPE), metallocene linear low density polyethylene (mLLDPE), ethylene vinyl acetate (EVA) copolymer, ethylene-propylene (EP) copolymer or ethylene-propylene-butene (EPB) terpolymer, and a gas-barrier layer formed on the heat-seal layer, wherein the gas-barrier layer includes a plurality of composite layers, each including a polymer substrate and a single layer or multiple layers of metal or oxide thereof which is formed on one side or both sides of the polymer substrate, and the polymer substrate includes uniaxial-stretched or biaxial-stretched polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyimide (PI), ethylene/vinyl alcohol (EVOH) copolymer or a combination thereof. The invention also provides a vacuum insulation panel including the composite film.
摘要:
A gas-barrier heat-seal composite film is provided. The gas-barrier heat-seal composite film includes a heat-seal layer including very low density polyethylene (VLDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE), metallocene polyethylene (mPE), metallocene linear low density polyethylene (mLLDPE), ethylene vinyl acetate (EVA) copolymer, ethylene-propylene (EP) copolymer or ethylene-propylene-butene (EPB) terpolymer, and a gas-barrier layer formed on the heat-seal layer, wherein the gas-barrier layer includes a plurality of composite layers, each including a polymer substrate and a single layer or multiple layers of metal or oxide thereof which is formed on one side or both sides of the polymer substrate, and the polymer substrate includes uniaxial-stretched or biaxial-stretched polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyimide (PI), ethylene/vinyl alcohol (EVOH) copolymer or a combination thereof. The invention also provides a vacuum insulation panel including the composite film.
摘要:
The invention provides a oriented white polyester film, which includes at least one polyester film with a cavitation additive, wherein the cavitation additive includes poly(methyl methacrylate-co-methyl methacrylamide), a copolymer of sulfophthalate salt and nylon, polyarylate (PAR), ethylene methacrylate (EMA), ethylene methacrylate acrylic acid terpolymer (EMAAA), polyetherimide (PEI), metallocene catalyzed cyclic olefin copolymer (mCOC) or combinations thereof.
摘要:
The invention provides a oriented white polyester film, which includes at least one polyester film with a cavitation additive, wherein the cavitation additive includes poly(methyl methacrylate-co-methyl methacrylamide), a copolymer of sulfophthalate salt and nylon, polyarylate (PAR), ethylene methacrylate (EMA), ethylene methacrylate acrylic acid terpolymer (EMAAA), polyetherimide (PEI), metallocene catalyzed cyclic olefin copolymer (mCOC) or combinations thereof.
摘要:
The present invention provides a method and apparatus for producing a crosslinked foamed article. Such a method comprises the steps of: (a) uniformly mixing at least one crosslinkable resin, at least one crosslinking agent, at least one foaming agent, and some additives into a resin composition; (b) extruding the resin composition through a die into an extrudate of a predetermined shape; and (c) heating the extrudate to a temperature sufficient to cause crosslinking and foaming of the crosslinkable resin while being driven by a driving device to move in the extruding direction, thereby obtaining a crosslinked foamed article. By means of the present invention, the resin extrudate can progress smoothly through the heater or the mold.
摘要:
A polyolefine composition for preparing a polyolefine film having high heat-sealing properties. The polyolefine composition includes from about 2 percent to about 35 percent by weight of metallocene polyethylene or its copolymer and from about 65 percent to about 98 percent by weight of polypropylene or its copolymer. The metallocene polyethylene or its copolymer has a long chain branching index between 0 and 20/1000 carbons, a density between 0.880 g/cm.sup.3 and 0.915 g/cm.sup.3, a melting index between 0.5 g/10 min and 30 g/10 min, and a molecular weight distribution of less than 3.5. The polyolefine composition is fabricated into films by the blown film method or casting laminated method.
摘要翻译:一种用于制备具有高热封性的聚烯烃薄膜的聚烯烃组合物。 聚烯烃组合物包含约2%至约35%重量的茂金属聚乙烯或其共聚物和约65%至约98%重量的聚丙烯或其共聚物。 茂金属聚乙烯或其共聚物具有0至20/1000个碳的长链支化指数,密度在0.880g / cm 3至0.915g / cm 3之间,熔融指数在0.5g / 10min至30g / 10min之间,以及 分子量分布小于3.5。 聚烯烃组合物通过吹塑薄膜法或浇铸层压法制成薄膜。
摘要:
A tipping device and processing for medical catheters, the device including a pneumatic mechanism, two fixtures controlled by the pneumatic mechanism to hold two opposite ends of the catheter, a nozzle controlled to heat or cool down the catheter, and hydraulic cylinder controlled to pull the catheter during the heating. When the front part of the catheter is heated and pulled, the outer diameter of the front part of the catheter is gradually reduced toward the middle, then the catheter is cooled down and removed from the device and then cut into a tapered tip.
摘要:
Method of manufacturing gradient composite material comprises steps of providing plural surface modified inorganic nanoparticles with functional groups or oligomers with functional groups; transferring the surface modified inorganic nanoparticles or oligomers with functional groups into an organic matrix to form a mixture; performing a photo polymerization step or a thermo-polymerization step for polymerizing and generating a gradient distribution of the surface modified inorganic nanoparticles or oligomers with functional groups in the mixture; and curing the mixture to solidify the organic matrix and form a structure with gradient composite, wherein the organic matrix is transferred into an organic polymer after curing.
摘要:
Method of manufacturing gradient composite material comprises steps of providing plural surface modified inorganic nanoparticles with functional groups or oligomers with functional groups; transferring the surface modified inorganic nanoparticles or oligomers with functional groups into an organic matrix to form a mixture; performing a photo polymerization step or a thermo-polymerization step for polymerizing and generating a gradient distribution of the surface modified inorganic nanoparticles or oligomers with functional groups in the mixture; and curing the mixture to solidify the organic matrix and form a structure with gradient composite, wherein the organic matrix is transferred into an organic polymer after curing.