Abstract:
An electron microscope assembly suitable for enhancing an image of a lithography tool includes an electron microscope configured for positioning below a lithography stage of an e-beam lithography tool, the lithography stage of the e-beam lithography tool including an aperture for providing the microscope line-of-sight to the lithography optics of the lithography tool, a translation unit configured to selectively translate the microscope along the optical axis of the lithography optics of the lithography tool responsive to a translation control system, the translation unit further configured to position the microscope in an operational state such that the optics of the microscope are positioned proximate to the lithography optics, a docking unit configured to reversibly mechanically couple the microscope with the lithography tool, the microscope configured to magnify a virtual sample plane image generated by the lithography tool.
Abstract:
Multi-beam e-beam columns and inspection systems that use such multi-beam e-beam columns are disclosed. A multi-beam e-beam column configured in accordance with the present disclosure may include an electron source and a multi-lens array configured to produce a plurality of beamlets utilizing electrons provided by the electron source. The multi-lens array may be further configured to shift a focus of at least one particular beamlet of the plurality of beamlets such that the focus of the at least one particular beamlet is different from a focus of at least one other beamlet of the plurality of beamlets.
Abstract:
Multi-beam e-beam columns and inspection systems that use such multi-beam e-beam columns are disclosed. A multi-beam e-beam column configured in accordance with the present disclosure may include an electron source and a multi-lens array configured to produce a plurality of beamlets utilizing electrons provided by the electron source. The multi-lens array may be further configured to shift a focus of at least one particular beamlet of the plurality of beamlets such that the focus of the at least one particular beamlet is different from a focus of at least one other beamlet of the plurality of beamlets.
Abstract:
Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.