Abstract:
A scanning electron microscopy system is disclosed. The system includes a multi-beam scanning electron microscopy (SEM) sub-system. The SEM sub-system includes a multi-beam electron source configured to form a plurality of electron beams, a sample stage configured to secure a sample, an electron-optical assembly to direct the electron beams onto a portion of the sample, and a detector assembly configured to simultaneously acquire multiple images of the surface of the sample. The system includes a controller configured to receive the images from the detector assembly, identify a best focus image of images by analyzing one or more image quality parameters of the images, and direct the multi-lens array to adjust a focus of one or more electron beams based on a focus of an electron beam corresponding with the identified best focus image.
Abstract:
Multi-beam scanning electron microscope (SEM) inspection systems with dark field imaging capabilities are disclosed. An SEM inspection system may include an electron source and at least one optical device. The at least one optical device may be configured to produce a plurality of primary beamlets utilizing electrons provided by the electron source and deliver the plurality of primary beamlets toward a target. The apparatus may also include an array of detectors configured to receive a plurality of image beamlets emitted by the target in response to the plurality of primary beamlets and produce at least one dark field image of the target.
Abstract:
Multi-beam scanning electron microscope inspection systems are disclosed. A multi-beam scanning electron microscope inspection system may include an electron source and a beamlet control mechanism. The beamlet control mechanism may be configured to produce a plurality of beamlets utilizing electrons provided by the electron source and deliver one of the plurality of beamlets toward a target at a time instance. The multi-beam scanning electron microscope inspection system may also include a detector configured to produce an image of the target at least partially based on electrons backscattered out of the target.
Abstract:
Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.
Abstract:
An electron microscope assembly suitable for enhancing an image of a lithography tool includes an electron microscope configured for positioning below a lithography stage of an e-beam lithography tool, the lithography stage of the e-beam lithography tool including an aperture for providing the microscope line-of-sight to the lithography optics of the lithography tool, a translation unit configured to selectively translate the microscope along the optical axis of the lithography optics of the lithography tool responsive to a translation control system, the translation unit further configured to position the microscope in an operational state such that the optics of the microscope are positioned proximate to the lithography optics, a docking unit configured to reversibly mechanically couple the microscope with the lithography tool, the microscope configured to magnify a virtual sample plane image generated by the lithography tool.
Abstract:
A scanning electron microscopy system is disclosed. The system includes a multi-beam scanning electron microscopy (SEM) sub-system. The SEM sub-system includes a multi-beam electron source configured to form a plurality of electron beams, a sample stage configured to secure a sample, an electron-optical assembly to direct the electron beams onto a portion of the sample, and a detector assembly configured to simultaneously acquire multiple images of the surface of the sample. The system includes a controller configured to receive the images from the detector assembly, identify a best focus image of images by analyzing one or more image quality parameters of the images, and direct the multi-lens array to adjust a focus of one or more electron beams based on a focus of an electron beam corresponding with the identified best focus image.
Abstract:
A scanning electron microscopy system is disclosed. The system includes a multi-beam scanning electron microscopy (SEM) sub-system. The SEM sub-system includes a multi-beam electron source configured to form a plurality of electron beams, a sample stage configured to secure a sample, an electron-optical assembly to direct the electron beams onto a portion of the sample, and a detector assembly configured to simultaneously acquire multiple images of the surface of the sample. The system includes a controller configured to receive the images from the detector assembly, identify a best focus image of images by analyzing one or more image quality parameters of the images, and direct the multi-lens array to adjust a focus of one or more electron beams based on a focus of an electron beam corresponding with the identified best focus image.
Abstract:
A scanning electron microscopy system is disclosed. The system includes a multi-beam scanning electron microscopy (SEM) sub-system. The SEM sub-system includes a multi-beam electron beam source configured to generate a plurality of electron beams, a sample stage configured to secure a sample, an electron-optical assembly, and a detector assembly configured to detect a plurality of electron signal beams emanating from the surface of the sample to form a plurality of images, each image associated with an electron beam of the plurality of electron beams. The system includes a controller configured to receive the images from the detector assembly, compare two or more of the images to identify common noise components present in the two or more images, and remove the identified common noise components from one or more images of the plurality of images.
Abstract:
Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.
Abstract:
Multi-beam scanning electron microscope inspection systems are disclosed. A multi-beam scanning electron microscope inspection system may include an electron source and a beamlet control mechanism. The beamlet control mechanism may be configured to produce a plurality of beamlets utilizing electrons provided by the electron source and deliver one of the plurality of beamlets toward a target at a time instance. The multi-beam scanning electron microscope inspection system may also include a detector configured to produce an image of the target at least partially based on electrons backscattered out of the target.