Abstract:
A charged particle apparatus configured to project a multi-beam of charged particles along a multi-beam path toward a sample, the charged particle apparatus comprising: a charged particle source configured to emit a charged particle beam toward a sample; a charged particle-optical device configured to project sub-beams of a multi-beam of charged particles along the multi-beam path toward the sample, the sub-beams of the multi-beam of charged particles derived from the charged particle beam; a tube surrounding the multi-beam path configured to operate at a first potential difference from a ground potential; and a support configured to support the sample at a second potential difference from the ground potential, the first potential difference and the second potential difference having a difference so as to accelerate the multi-beam of charged particles towards the sample; wherein the first potential difference is greater than the second potential difference.
Abstract:
A method prepares a microsample from a volume sample using multiple particle beams. The method includes providing a volume sample in the microscope system, wherein the interior of the volume sample has a sample region of interest, and producing a macrolamella comprising the sample region of interest by removing sample material of the volume sample using one of the particle beams. The method also includes orienting the macrolamella relative to one of the particle beams, and removing sample material of the macrolamella via a beam so that the region of interest is exposed.
Abstract:
The system described herein relates to a gas feed device having a first precursor reservoir that receives a first precursor and having a second precursor reservoir that receives a second precursor, a feed unit that feeds a gaseous state of the first precursor and/or a gaseous state of the second precursor onto a surface of an object. A first line device is arranged between the first precursor reservoir and the feed unit. A second line device is arranged between the second precursor reservoir and the feed unit. A first valve is arranged between the first line device and the feed unit. A second valve is arranged between the second line device and the feed unit. A control valve for the feed of the gaseous state of the first precursor and/or the gaseous state of the second precursor is connected to the first valve, the second valve and the feed unit.
Abstract:
The invention relates to system and method of inspecting a specimen with a plurality of charged particle beamlets. The method comprises the steps of providing a specimen, providing a plurality of charged particle beamlets and focusing said plurality of charged particle beamlets onto said specimen, and detecting a flux of radiation emanating from the specimen in response to said irradiation by said plurality of charged particle beamlets.
Abstract:
The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput.
Abstract:
In accordance with an embodiment, an analytical apparatus includes a member, a voltage source connected to the member and a detecting section. The member has an inserting portion into which a sample holder supporting a sample is insertable and whose shape corresponds to a shape of the sample holder. The detecting section is configured to detect a substance to be emitted from the sample by field evaporation. The shape of the inserting portion in a cross section of a direction perpendicular to an inserting direction of the sample holder is a shape excluding a perfect circle.
Abstract:
Multi-beam e-beam columns and inspection systems that use such multi-beam e-beam columns are disclosed. A multi-beam e-beam column configured in accordance with the present disclosure may include an electron source and a multi-lens array configured to produce a plurality of beamlets utilizing electrons provided by the electron source. The multi-lens array may be further configured to shift a focus of at least one particular beamlet of the plurality of beamlets such that the focus of the at least one particular beamlet is different from a focus of at least one other beamlet of the plurality of beamlets.
Abstract:
A method includes: generating a multiplicity of particle beams such that the particle beams penetrate a predetermined plane side-by-side and have within a volume region around the predetermined plane in each case one beam focus; scanning a first region of the surface of an object with the particle beams and detecting first intensities of particles produced by the particle beams while setting an operating parameter of the multi-beam particle microscope; and determining first values of an object property based on the first intensities. The first values represent the object property within the first region, and the object property represents a physical property of the object. The method also includes determining a second value of the operating parameter for use for a second region of the surface based on the first values of the object property.
Abstract:
A charged particle beam apparatus with improved depth of focus and maintained/improved resolution has a charged particle source, an off-axis illumination aperture, a lens, a computer, and a memory unit. The apparatus acquires an image by detecting a signal generated by irradiating a sample with a charged particle beam caused from the charged particle source via the off-axis illumination aperture. The computer has a beam-computing-process unit to estimate a beam profile of the charged particle beam and an image-sharpening-process unit to sharpen the image using the estimated beam profile.
Abstract:
Charged particle beam imaging and measurement systems are provided using gas amplification with an improved imaging gas. The system includes a charged particle beam source for directing a charged particle beam to work piece, a focusing lens for focusing the charged particles onto the work piece, and an electrode for accelerating secondary electrons generated from the work piece irradiation by the charged practice beam, or another gas cascade detection scheme. The gas imaging is performed in a high pressure scanning electron microscope (HPSEM) chamber for enclosing the improved imaging gas including CH3CH2OH (ethanol) vapor. The electrode accelerates the secondary electrons though the CH3CH2OH to ionize the CH3CH2OH through ionization cascade to amplify the number of secondary electrons for detection. An optimal configuration is provided for use of the improved imaging gas, and techniques are provided to conduct imaging studies of organic liquids and solvents, and other CH3CH2OH-based processes.