Abstract:
A multi-column scanning electron microscopy (SEM) system is disclosed. The SEM system includes a source assembly. The source assembly includes two or more electron beam sources configured to generate a plurality of electron beams. The source assembly also includes two or more sets of positioners configured to actuate the two or more electron beam sources. The SEM system also includes a column assembly. The column assembly includes a plurality of substrate arrays. The column assembly also includes two or more electron-optical columns formed by a set of column electron-optical elements bonded to the plurality of substrate arrays. The SEM system also includes a stage configured to secure a sample that at least one of emits or scatters electrons in response to the plurality of electron beams directed by the two or more electron-optical columns to the sample.
Abstract:
A permanent-magnet particle beam apparatus and method incorporating a non-magnetic portion for tunability are provided. The permanent-magnet particle beam apparatus includes a particle beam emitter that emits a charged particle beam, and includes a set of permanent magnets forming a magnetic field for controlling condensing of the charged particle beam. The permanent-magnet particle beam apparatus further includes a non-magnetic electrical conductor component situated with the set of permanent magnets to control a kinetic energy of the charged particle beam moving through the magnetic field.
Abstract:
A multi-column scanning electron microscopy (SEM) system includes a column assembly, where the column assembly includes a first substrate array assembly and at least a second substrate array assembly. The system also includes a source assembly, the source assembly including two or more illumination sources configured to generate two or more electron beams and two or more sets of a plurality of positioners configured to adjust a position of a particular illumination source of the two or more illumination sources in a plurality of directions. The system also includes a stage configured to secure a sample, where the column assembly directs at least a portion of the two or more electron beams onto a portion of the sample.
Abstract:
A metrology system is configured to provide visual inspection of a workpiece, three-dimensional magnetic field map, and height measurement. A stage is configured to bring points of interest at the workpiece under the desired tool for measurement. The optical field, magnetic field, and height information can be used independently or together in order to correlate defects in the manufacturing process of the workpiece. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A multi-column scanning electron microscopy (SEM) system is disclosed. The SEM system includes a source assembly. The source assembly includes two or more electron beam sources configured to generate a plurality of electron beams. The source assembly also includes two or more sets of positioners configured to actuate the two or more electron beam sources. The SEM system also includes a column assembly. The column assembly includes a plurality of substrate arrays. The column assembly also includes two or more electron-optical columns formed by a set of column electron-optical elements bonded to the plurality of substrate arrays. The SEM system also includes a stage configured to secure a sample that at least one of emits or scatters electrons in response to the plurality of electron beams directed by the two or more electron-optical columns to the sample.
Abstract:
A permanent-magnet particle beam apparatus and method incorporating a non-magnetic portion for tunability are provided. The permanent-magnet particle beam apparatus includes a particle beam emitter that emits a charged particle beam, and includes a set of permanent magnets forming a magnetic field for controlling condensing of the charged particle beam. The permanent-magnet particle beam apparatus further includes a non-magnetic electrical conductor component situated with the set of permanent magnets to control a kinetic energy of the charged particle beam moving through the magnetic field.
Abstract:
A metrology system is configured to provide visual inspection of a workpiece, three-dimensional magnetic field map, and height measurement. A stage is configured to bring points of interest at the workpiece under the desired tool for measurement. The optical field, magnetic field, and height information can be used independently or together in order to correlate defects in the manufacturing process of the workpiece. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A charged particle detection device has an active portion for configured to produce a signal in response secondary charged particles emitted from a sample landing on the active portion. The active portion is shaped to accommodate an expected asymmetric pattern of the secondary charged particles at a detector. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A charged particle detection device has an active portion for configured to produce a signal in response secondary charged particles emitted from a sample landing on the active portion. The active portion is shaped to accommodate an expected asymmetric pattern of the secondary charged particles at a detector. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A semiconductor device comprises a plurality of device features formed on a substrate and a plurality of dummy features formed on the substrate and across an open region between the device features. Adjacent device features are spaced apart by a distance of 100 microns or more. Each device feature includes a barrier island and a metal layer on top of the barrier island. Each dummy feature has a structure that corresponds to the structure of the barrier island. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.