Abstract:
A multi-column scanning electron microscopy (SEM) system is disclosed. The SEM system includes a source assembly. The source assembly includes two or more electron beam sources configured to generate a plurality of electron beams. The source assembly also includes two or more sets of positioners configured to actuate the two or more electron beam sources. The SEM system also includes a column assembly. The column assembly includes a plurality of substrate arrays. The column assembly also includes two or more electron-optical columns formed by a set of column electron-optical elements bonded to the plurality of substrate arrays. The SEM system also includes a stage configured to secure a sample that at least one of emits or scatters electrons in response to the plurality of electron beams directed by the two or more electron-optical columns to the sample.
Abstract:
A multi-column assembly for a scanning electron microscopy (SEM) system is disclosed. The multi-column assembly includes a plurality of electron-optical columns arranged in an array defined by one or more spacings. Each electron-optical column includes one or more electron-optical elements. The plurality of electron-optical columns is configured to characterize one or more field areas on a surface of a sample secured on a stage. The number of electron-optical columns in the plurality of electron-optical columns equals an integer number of inspection areas in a field area of the one or more field areas. The one or more spacings of the plurality of electron-optical columns correspond to one or more dimensions of the inspection areas.
Abstract:
A scanning electron microscopy (SEM) system includes a plurality of electron beam sources configured to generate a primary electron beam. The SEM system includes an electron-optical column array with a plurality of electron-optical columns. An electron-optical column includes a plurality of electron-optical elements. The plurality of electron-optical elements includes a deflector layer configured to be driven via a common controller shared by at least some of the plurality of electron-optical columns and includes a trim deflector layer configured to be driven by an individual controller. The plurality of electron-optical elements is arranged to form an electron beam channel configured to direct the primary electron beam to a sample secured on a stage, which emits an electron beam in response to the primary electron beam. The electron-optical column includes an electron detector. The electron beam channel is configured to direct the electron beam to the electron detector.
Abstract:
A multi-column scanning electron microscopy (SEM) system includes a column assembly, where the column assembly includes a first substrate array assembly and at least a second substrate array assembly. The system also includes a source assembly, the source assembly including two or more illumination sources configured to generate two or more electron beams and two or more sets of a plurality of positioners configured to adjust a position of a particular illumination source of the two or more illumination sources in a plurality of directions. The system also includes a stage configured to secure a sample, where the column assembly directs at least a portion of the two or more electron beams onto a portion of the sample.
Abstract:
A metrology system is configured to provide visual inspection of a workpiece, three-dimensional magnetic field map, and height measurement. A stage is configured to bring points of interest at the workpiece under the desired tool for measurement. The optical field, magnetic field, and height information can be used independently or together in order to correlate defects in the manufacturing process of the workpiece. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A multi-column assembly for a scanning electron microscopy (SEM) system is disclosed. The multi-column assembly includes a plurality of electron-optical columns arranged in an array defined by one or more spacings. Each electron-optical column includes one or more electron-optical elements. The plurality of electron-optical columns is configured to characterize one or more field areas on a surface of a sample secured on a stage. The number of electron-optical columns in the plurality of electron-optical columns equals an integer number of inspection areas in a field area of the one or more field areas. The one or more spacings of the plurality of electron-optical columns correspond to one or more dimensions of the inspection areas.
Abstract:
Embodiments of this invention use multi-layer ceramic substrate with one or more hermetically sealed and filled metal vias with smaller pitch and size in combination with flexible printed circuit cables and interposers to provide a custom electric feed through for vacuum to atmosphere chambers. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A multi-column scanning electron microscopy (SEM) system is disclosed. The SEM system includes a source assembly. The source assembly includes two or more electron beam sources configured to generate a plurality of electron beams. The source assembly also includes two or more sets of positioners configured to actuate the two or more electron beam sources. The SEM system also includes a column assembly. The column assembly includes a plurality of substrate arrays. The column assembly also includes two or more electron-optical columns formed by a set of column electron-optical elements bonded to the plurality of substrate arrays. The SEM system also includes a stage configured to secure a sample that at least one of emits or scatters electrons in response to the plurality of electron beams directed by the two or more electron-optical columns to the sample.
Abstract:
Embodiments of this invention use multi-layer ceramic substrate with one or more hermetically sealed and filled metal vias with smaller pitch and size in combination with flexible printed circuit cables and interposers to provide a custom electric feed through for vacuum to atmosphere chambers. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A metrology system is configured to provide visual inspection of a workpiece, three-dimensional magnetic field map, and height measurement. A stage is configured to bring points of interest at the workpiece under the desired tool for measurement. The optical field, magnetic field, and height information can be used independently or together in order to correlate defects in the manufacturing process of the workpiece. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.