摘要:
An oxide sintered body is obtained by sintering indium oxide, gallium oxide and tin oxide. The oxide sintered body has a relative density of 90% or more and an average grain size of 10 μm or less. In the oxide sintered body, the relations 30 atomic %≦[In]≦50 atomic %, 20 atomic %≦[Ga]≦30 atomic % and 25 atomic %≦[Sn]≦45 atomic % are satisfied. [In], [Ga] and [Sn] are ratios of contents (atomic %) of indium gallium and tin, respectively, to all metal elements contained in the oxide sintered body. The oxide sintered body has an InGaO3 phase which satisfies the relation [InGaO3]≧0.05.
摘要:
An electrode for use in an input device is formed on a transparent substrate. The electrode has a laminated structure including a first layer, a second layer and a third layer on one surface of the transparent substrate, in this order from the farthest side from the surface. The first layer includes a transparent conductive film. The second layer includes one or more members of a nitride of Mo and a nitride of an Mo alloy. The third layer includes a metal film having a reflectance of 40% or higher and a transmittance of 10% or less.
摘要:
An oxide semiconductor layer in a thin-film transistor includes In, Ga, Zn and Sn. The respective ratios of the metal elements to a total (In+Ga+Zn+Sn) of all the metal elements in the oxide semiconductor layer are: In: 20 to 45 atom %, Ga: 5 to 20 atom %, Zn: 30 to 60 atom %, and Sn: 9 to 25 atom %.
摘要:
A thin film transistor includes at least an oxide semiconductor layer, a gate insulating film, a gate electrode, a source-drain electrode, and a protective film in this order on a substrate and further includes a protective layer. The oxide semiconductor layer includes an oxide constituted of In, Ga, Zn, Sn, and O. The atomic ratio of each metal element in the oxide semiconductor layer satisfies the following relationships: 0.09≤Sn/(In+Ga+Zn+Sn)≤0.25, 0.15≤In/(In+Ga+Zn+Sn)≤0.40, 0.07≤Ga/(In+Ga+Zn+Sn)≤0.20, and 0.35≤Zn/(In+Ga+Zn+Sn)≤0.55. The protective layer contains SiNx. The thin film transistor has a mobility of 15 cm2/Vs or more.
摘要:
A thin film transistor includes at least a gate electrode, a gate insulating film, an oxide semiconductor layer, source/drain electrodes, and at least one layer of a passivation film on a substrate. Metal elements constituting the oxide semiconductor layer include In, Ga, Zn, and Sn. Respective ratios of the metal elements to a total (In+Ga+Zn+Sn) of the metal elements in the oxide semiconductor layer satisfy: In: 30 atom % or more and 45 atom % or less, Ga: 5 atom % or more and less than 20 atom %, Zn: 30 atom % or more and 60 atom % or less, and Sn: 4.0 atom % or more and less than 9.0 atom %.
摘要:
An Ag alloy film used for a reflecting electrode or an interconnection electrode, the Ag alloy film exhibiting low electrical resistivity and high reflectivity and having exceptional oxidation resistance under cleaning treatments such as an O2 plasma treatment or UV irradiation, wherein the Ag alloy film contains either In in an amount of larger than 2.0 atomic % to 2.7 atomic % or smaller; or Zn in an amount of larger than 2.0 atomic % to 3.5 atomic % or smaller; or both. The Ag alloy film may further contain Bi in an amount of 0.01 to 1.0 atomic %.
摘要:
Provided is a method for reliably and simply evaluating the quality of an oxide semiconductor thin film and a laminated body having a protective film on the surface of this oxide semiconductor thin film. Also provided is a method for reliably and simply managing the quality of an oxide semiconductor thin film. This method, which is for evaluating the quality of an oxide semiconductor thin film and a laminated body having a protective film on the surface of this oxide semiconductor thin film, has: a first step, wherein an oxide semiconductor thin film is formed on a substrate, after which the electron state of the oxide semiconductor thin film is measured by a contact method or a noncontact method, thereby evaluating defects arising from in-film defects in the oxide semiconductor thin film; and a second step, wherein the oxide semiconductor thin film is processed on the basis of a condition determined on the basis of that evaluation, after which a protective film is formed on the surface of the oxide semiconductor thin film, and then the electron state of the oxide semiconductor thin film is measured by a contact method or a noncontact method, thereby evaluating defects arising from defects at the interface between the oxide semiconductor thin film and the protective film.
摘要:
A quality evaluation method for an oxide semiconductor thin film includes: selecting a peak value having a largest calculated value and a time constant for the peak value among calculated values obtained by substituting each signal value for respective elapsed times after stopping excitation light irradiation and the corresponding elapsed time into the following Equation (1); and estimating, from the peak value and the time constant, an energy level of defect state and the defect density in the oxide semiconductor thin film: x=(signal value)×(elapsed time for the signal value) Equation 1.
摘要:
Disclosed herein is a thin film transistor including at least an oxide semiconductor layer, a gate insulting film, a gate electrode, a source-drain electrode and a protective film in this order on a substrate and further including a protective layer. The oxide semiconductor layer includes an oxide constituted of In, Ga, Sn and O and an atomic ratio of each metal element satisfies the following relationships: 0.30≤In/(In+Ga+Sn)≤0.50, 0.19≤Ga/(In+Ga+Sn)≤0.30 and 0.24≤Sn/(In+Ga+Sn)≤0.45. The protective layer contains SiNx, and mobility is 35 cm2/Vs or more.