Abstract:
A transparent electrode includes a substrate, a conductive metal layer, a metal adhesion layer and a transparent conductive layer. The conductive metal layer is on the substrate. The metal adhesion layer is between the substrate and the conductive metal layer. The transparent conductive layer covers the substrate, the metal adhesion layer and the conductive metal layer. The conductive metal layer has a thin metal wire formed using a metal nanoparticle ink or a metal complex ink.
Abstract:
A transparent electrode includes a nitrogen-containing layer constituted by using a compound containing a nitrogen atom (N), an electrode layer containing silver (Ag) as a main component, which is disposed adjacent to the nitrogen-containing layer, and two high-refractive index layers each having a higher refractive index than that of the nitrogen-containing layer, which are disposed so that the electrode layer and the nitrogen-containing layer are sandwiched between the high-refractive index layers.
Abstract:
A transparent conductor which includes: a conductive layer that is formed of a metal material having a thickness of 15 nm or less and a platinum group element-containing layer including at least one of Pt and Pd, wherein, when an optical admittance at an interface on a side of the admittance-adjusting layer of the conductive layer at a wavelength of 570 nm is expressed as Y1=x1+iy1 and an optical admittance at an interface on a side opposite to the admittance-adjusting layer of the conductive layer at a wavelength of 570 nm is expressed as Y2=x2+iy2, at least one of x1 and x2 is 1.6 or more.
Abstract:
An object of the present invention is to provide an organic electroluminescent element which has a high luminous efficiency and an excellent driving voltage and exhibits excellent stability, and a display device and a lighting device that are equipped with the organic electroluminescent element.The organic electroluminescent element of the present invention is an organic electroluminescent element which includes at least an electron injection layer, an electron transport layer, and a luminous layer between a positive electrode and a negative electrode and in which the electron injection layer contains an electride, the electron transport layer contains an organic compound having a nitrogen atom, at least one of the nitrogen atoms has a lone pair of electrons that does not participate in aromaticity, and the lone pair of electrons does not coordinate a metal.
Abstract:
A transparent electrode for a touch panel includes a nitrogen-containing layer formed using a compound containing nitrogen atoms, and an electrode layer mainly containing silver and provided stacked on the nitrogen-containing layer.
Abstract:
Provided are an electronic device and an organic electroluminescence element both of which are excellent in optical properties as well as long-term storage stability and scratch resistance. Herein, the electronic device includes at least one functional layer on a resin substrate, and the electronic device is configured so that the functional layer contains a component with a structure of X—Y—X′ as a resin component; X and X′ independently include at least any one of the formulae (1)˜(7) respectively; and Y is a bivalent group including at least one S atom and one aromatic ring.
Abstract:
The present invention addresses the problem of providing a transparent electrode having a low resistance and high storage stability, a method for manufacturing the transparent electrode, and an organic electroluminescent element. This transparent electrode wherein a metal conductive layer is provided on a substrate is characterized in that: the metal conductive layer has a metal fine line, and a plating layer covering the metal fine line; the transparent electrode has a transparent conductive layer on a substrate surface on the side on which the metal fine line is formed, said transparent conductive layer covering the substrate and the metal conductive layer; and the metal fine line is formed using a metal nano-particle ink or a metal complex ink.
Abstract:
A transparent electrode is configured which is provided with: a nitrogen-containing layer; a conductive layer which is provided abutting the nitrogen-containing layer, and which has silver as a main component thereof; a high refractive index layer having a refractive index higher than that of the nitrogen-containing layer; and a low refractive index layer having a refractive index lower than that of the high refractive index layer. In the nitrogen-containing layer, a compound is used which includes nitrogen atoms, and which has, in cases when n represents the number of unshared electron pairs which are not involved in aromaticity and which are not coordinated to metal, from among the unshared electron pairs of the nitrogen atoms, and M represents molecular weight, an effective unshared-electron-pair content [n/M] that satisfies 2.0×10−3≦[n/M].
Abstract:
This learning device is provided with: a simulation execution unit that, by using electromagnetic field analysis simulation, determines a reflected wave spectrum obtained when electromagnetic waves are emitted from a reader to an identification target; and a machine learning unit that, by using training data in which the reflected wave spectrum calculated by the simulation execution unit and an attribute thereof are defined as a set, performs a training process on a learning model by machine learning. The simulation execution unit generates a plurality of the reflected wave spectra belonging to the same attribute by variously changing various parameters related to the identification target from reference parameters. The machine learning unit performs a training process on the learning model by machine learning by using, as training data, the plurality of reflected wave spectra obtained for each attribute.
Abstract:
Provided are: a transparent electrode which exhibits excellent resistance to high temperature and high humidity, while having surface smoothness; a method for producing this transparent electrode; and an electronic device which has improved reliability by using this transparent electrode. A transparent electrode is configured to comprise a metal thin wire pattern that is formed on one main surface of a transparent substrate using metal nanoparticles and a metal oxide layer that has a surface roughness of 5 nm or less and is formed on the main surface of the transparent substrate so as to cover the surface of the metal thin wire pattern.