Abstract:
Provided is a non-invasive system for estimating an atrial signal, including a plurality of sensors to sense a surface electrocardiogram signal, a reference atrial signal generation unit to generate an estimated ventricular signal with respect to a R wave in an electrocardiogram signal from one sensor among the plurality of sensors, and to generate a reference atrial signal by subtracting the estimated ventricular signal from the electrocardiogram signal from the one sensor, and an atrial signal estimation unit to generate an estimated atrial signal by applying a constrained independent component analysis algorithm based on the reference atrial signal to the received surface electrocardiogram signal, and to estimate one of the estimated atrial signals as an actual atrial signal, and a method using the same.
Abstract:
The pelvis support device according to an embodiment of the present disclosure is used for a gait rehabilitation robot having a gait assistance link member connected to the leg of a rehabilitator and includes a support frame, one pair of support bars linearly movable along the longitudinal direction of the support frame, a first driving unit for transmitting power so that the support bar moves along the longitudinal direction of the support frame, a ball screw disposed in each support bar, a movable block coupled to the ball screw and linearly movable along the longitudinal direction of the support bar according to the operation of the ball screw, and a second driving unit for transmitting power to drive the ball screw.
Abstract:
Disclosed is an apparatus for measuring electrocardiogram (ECG) using wireless communication, including a first measuring device and a second measuring device connected to each other using wireless communication, wherein the first measuring device includes a first electrode configured to measure a first signal generated by a heartbeat, and a slave signal generation unit configured to generate a slave signal based on the first signal and a wireless virtual ground signal received from the second measuring device, and the second measuring device includes a second electrode configured to measure a second signal generated by a heartbeat, a ground electrode configured to measure a ground signal, a wireless virtual ground unit configured to generate the wireless virtual ground signal based on the ground signal, and an ECG measuring unit configured to measure ECG based on the slave signal, the second signal, and the wireless virtual ground signal.
Abstract:
A walk assist robot for lower body walking of a walking trainee, including a joint angle signal measurement unit disposed on a joint of the walking trainee, an electromyogram (EMG) signal measurement unit disposed on a muscle related to ankle joint extension of the walking trainee, a plantar pressure signal measurement unit disposed on a sole of the walking trainee, and a control unit to recognize signals measured from the joint angle signal measurement unit, the EMG signal measurement unit and the plantar pressure signal measurement unit and process the signals to recognize a walking speed intention of the walking trainee, wherein the control unit controls a walking speed of the walk assist robot from the walking speed intention of the walking trainee.
Abstract:
Disclosed herein is a gait rehabilitation apparatus including a first frame having a bottom surface which is movable at predetermined speed; a second frame extending upwards from a tip of the first frame; a load support unit which is mounted to an upper end of the second frame and is rotatable about a rotation axis thereof; a connection string, one end of which is connected to the load support unit, and the other end of which is connected to an upper body of a rehabilitant; a safety bar which is connected to the second frame and is rotatable so as to be tilted upwards; and a gait assistance link member which has a structure able to be tilted upwards, and is connected to each leg of the rehabilitant entering onto the first frame to assist rehabilitation training of the rehabilitant through mechanical movement of the gait assistance link member.
Abstract:
A power transmission apparatus includes a driving joint unit having a first driving gear fixed to a first driving shaft and a second driving gear fixed to a second driving shaft, an operating joint unit fixed on an operating shaft and having an operating gear rotating together with the operating shaft, a first operating belt connected to the first driving gear and the operating gear, a second operating belt connected to the second driving gear and the operating gear to apply a torque in opposite directions, a driving link having one end connected to the first driving shaft or the second driving shaft and the other end connected to the operating shaft, and an operating link fixed to the operating shaft.
Abstract:
A device for upper-limb rehabilitation, which assists a user in exercising the arm for rehabilitation, has a connector, a placing unit movably connected to the connector, and a driving unit configured to move the connector, wherein when a user places the arm on the placing unit and moves the placing unit, the driving unit is operated to move the connector along the placing unit, so as to enlarge a work space in which the user is capable of moving the arm.
Abstract:
The present disclosure provides a walk assist robot for lower body walking of a walking trainee, including a joint angle signal measurement unit disposed on a joint of the walking trainee, an electromyogram (EMG) signal measurement unit disposed on a muscle related to ankle joint extension of the walking trainee, a plantar pressure signal measurement unit disposed on a sole of the walking trainee, and a control unit to recognize signals measured from the joint angle signal measurement unit, the EMG signal measurement unit and the plantar pressure signal measurement unit and process the signals to recognize a walking speed intention of the walking trainee, wherein the control unit controls a walking speed of the walk assist robot from the walking speed intention of the walking trainee.
Abstract:
A guide framework for positioning an ultrasonic transducer which emits a focused ultrasound to a target point in carrying out surgery to apply ultrasonic stimulation to a subject's brain, includes a body in a shape of a mask that is laid on the subject's face, and a positioning hole formed through an inner surface and an outer surface of the mask body, the positioning hole into which the ultrasonic transducer is inserted, wherein the inner surface of the mask body is formed to conform a facial contour of the subject, and when the guide framework is laid on the subject's face and the ultrasonic transducer is disposed at the positioning hole, the position of the target point is naturally disposed at a preset stimulation site of the brain. An ultrasonic stimulation device includes an ultrasonic transducer and the guide framework for positioning the ultrasonic transducer.
Abstract:
An electromagnetic coil system for driving control of a micro-robot includes pairs of X-axis and Y-axis Helmholtz coils whose winding central axes are placed on an X axis and Y axis respectively, a position recognition system that detects a position and direction of the micro-robot in a workspace, a controller that controls an amount of supply of electric currents flowing to the X-axis or Y-axis Helmholtz coils in order to control movement of the micro-robot based on information about the movement of the micro-robot and previously input information about a path of the micro-robot, and a current amplifier that supplies the electric currents to the respective Helmholtz coils. The pairs of X-axis and Y-axis Helmholtz coils are disposed so as to face each other, and the X-axis Helmholtz coils and the Y-axis Helmholtz coils are vertically crossed and installed so as to form the workspace of the micro-robot.