摘要:
A process for finFET spacer formation generally includes depositing, in order, a conformnal liner material, a conformal spacer material, and a conformal capping material onto the finFET structure; tilt implanting dopant ions into portions of the capping layer about the gate structure; selectively removing undoped capping material about the source and drain regions; selectively removing exposed portions of the spacer material; selectively removing exposed portions of the capping material; anisotropically removing a portion of the spacer material so as to expose a top surface of the gate material and isolate the spacer material to sidewalls of the gate structure; and removing the oxide liner from the fin to form the spacer on the finFET structure.
摘要:
A process for finFET spacer formation generally includes depositing, in order, a conformal liner material, a conformal spacer material, and a conformal capping material onto the finFET structure; tilt implanting dopant ions into portions of the capping layer about the gate structure; selectively removing undoped capping material about the source and drain regions; selectively removing exposed portions of the spacer material; selectively removing exposed portions of the capping material; anisotropically removing a portion of the spacer material so as to expose a top surface of the gate material and isolate the spacer material to sidewalls of the gate structure; and removing the oxide liner from the fin to form the spacer on the finFET structure.
摘要:
Embodiments of the invention may include first providing a stack of layers including a semiconductor substrate, a buried oxide layer on the semiconductor substrate, a semiconductor-on-insulator layer on the buried-oxide layer, a nitride layer on the semiconductor-on-insulator layer, and a silicon oxide layer on the nitride layer. A first opening and second opening with a smaller cross-sectional area than the first opening are then formed in the silicon oxide layer, the nitride layer, the semiconductor-on-insulator layer, and the buried-oxide layer. The first opening and the second opening are then etched with a first etching gas. The first opening and the second opening are then etched with a second etching gas, which includes the first etching gas and a halogenated silicon compound, for example, silicon tetrafluoride or silicon tetrachloride. In one embodiment, the first etching gas includes hydrogen bromide, nitrogen trifluoride, and oxygen.
摘要:
The present invention, in one embodiment, provides a method of forming a gate structure including providing a substrate including a semiconducting device region, a high-k dielectric material present atop the semiconducting device region, and a metal gate conductor atop the high-k dielectric material, applying a photoresist layer atop the metal gate conductor; patterning the photoresist layer to provide an etch mask overlying a portion of the metal gate conductor corresponding to a gate stack; etching the metal gate conductor and the high-k dielectric material selective to the etch mask; and removing the etch mask with a substantially oxygen free nitrogen based plasma.
摘要:
Columnar elements which extend to varying heights above a major surface of a substrate, e.g., polysilicon studs within trenches in the substrate, are recessed to a uniform depth below the major surface. The columnar elements are etched selectively with respect to a material exposed at the surface in an at least partly lateral direction so that the columnar elements are recessed to a uniform depth below the major surface at walls of the trenches.
摘要:
A semiconductor structure is described. The structure includes a trench opening formed in a semiconductor substrate having a semiconductor-on-insulator (SOI) layer and a buried insulating (BOX) layer; and a filling material formed in the trench opening, the filling material forming a “V” shape within the trench memory cell, wherein the “V” shape includes a top portion substantially adjacent to a top surface of the BOX layer. A method of fabricating the semiconductor structure is also described. The method includes forming a trench opening in a semiconductor substrate having an SOI layer and a BOX layer; laterally etching the BOX layer such that a portion of the trench opening associated with the BOX layer is substantially greater than a portion of the trench opening associated with the SOI layer; filling the trench opening with a filling material; and recessing the filling material.
摘要:
Methods for opening a hard mask and a silicon-on-insulator substrate in a single process chamber are disclosed. In one embodiment, the method includes patterning a photoresist over a stack including an anti-reflective coating (ARC) layer, a silicon dioxide (SiO2) based hard mask layer, a silicon nitride pad layer, a silicon dioxide (SiO2) pad layer and the SOI substrate, wherein the SOI substrate includes a silicon-on-insulator layer and a buried silicon dioxide (SiO2) layer; and in a single process chamber: opening the ARC layer; etching the silicon dioxide (SiO2) based hard mask layer; etching the silicon nitride pad layer; etching the silicon dioxide (SiO2) pad layer; and etching the SOI substrate. Etching all layers in a single chamber reduces the turn-around-time, lowers the process cost, facilitates process control and/or improve a trench profile.
摘要:
Columnar elements which extend to varying heights above a major surface of a substrate, e.g., polysilicon studs within trenches in the substrate, are recessed to a uniform depth below the major surface. The columnar elements are etched selectively with respect to a material exposed at the surface in an at least partly lateral direction so that the columnar elements are recessed to a uniform depth below the major surface at walls of the trenches.
摘要:
A method forms a node dielectric in a bottle shaped trench and then deposits an initial conductor within the lower portion of the bottle shaped trench, such that a void is formed within the initial conductor. Next, the method forms an insulating collar in the upper portion of the bottle shaped trench above the initial conductor. Then, the method simultaneously etches a center portion of the insulating collar and the initial conductor until the void is exposed. This etching process forms a center opening within the insulating collar and the initial conductor. Additional conductor is deposited in the center opening such that the additional conductor is formed at least to the level of the surface of the substrate.
摘要:
Methods for enhancing trench capacitance and a trench capacitor so formed are disclosed. In one embodiment a method includes forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor. The rough sidewall enhances trench capacitance without increasing processing complexity or cost.