摘要:
The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
摘要:
A method comprises processing a substrate in a gas enclosure to form a film on one or more portions of the substrate. The method further comprises, while processing the substrate, circulating gas along a circulation path through the gas enclosure. Circulating the gas may comprise flowing gas through an exhaust housing enclosing a printhead assembly housed in the gas enclosure and filtering the gas flowing downstream of the printhead assembly from the exhaust housing.
摘要:
The present teachings disclose various embodiments of a printing system for printing substrate, in which the printing system can be housed in a gas enclosure, where the environment within the enclosure can be maintained as a controlled printing environment. A controlled environment of the present teachings can include control of the type of gas environment within the gas enclosure, the size and level particulate matter within the enclosure, control of the temperature within the enclosure and control of lighting. Various embodiments of a printing system of the present teachings can include a Y-axis motion system and a Z-axis moving plate that are configured to substantially decrease excess thermal load within the enclosure by, for example, eliminating or substantially minimizing the use of conventional electric motors.
摘要:
The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
摘要:
Apparatus and techniques are described herein for use in manufacturing electronic devices. such as can include organic light emitting diode (OLED) devices. Such apparatus and techniques can include using one or more modules having a controlled environment. For example, a substrate can be received from a printing system located in a first processing environment, and the substrate can be provided a second processing environment, such as to an enclosed thermal treatment module comprising a controlled second processing environment. The second processing environment can include a purified gas environment having a different composition than the first processing environment.
摘要:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
摘要:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
摘要:
The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.
摘要:
The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
摘要:
The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.