摘要:
An object is to obtain a semiconductor device in which channel length is reduced without increasing the gate resistance to realize higher operation speed and its manufacturing method. An MOSFET has a trench-type element isolation structure (2) formed in the main surface of a semiconductor substrate (1), a pair of extensions (3) and source/drain regions (4) selectively formed in the main surface of the semiconductor substrate (1) to face each other through a channel region (50), a silicon oxide film (5) formed on the trench-type element isolation structure (2) and on the source/drain regions (4) through a silicon oxide film (12), sidewalls (6) formed on sides of the silicon oxide film (5), a gate insulating film (7) formed on the main surface of the semiconductor substrate (1) in the part in which the channel region (50) is formed, and a gate electrode (8) formed to fill a recessed portion in an inversely tapered form formed by the sides of the sidewalls (6) and the upper surface of the gate insulating film (7).
摘要:
A semiconductor device and manufacturing method including a MOSFET having a trench-type element isolation structure (2) formed on a main surface of a semiconductor substrate (1). A pair of extensions (3) and source/drain regions (4) are selectively formed in the main surface so as to face each other through a channel region (50), a silicon oxide film (5) is formed on the trench-type element isolation structure (2) and on the source/drain regions (4) through a silicon oxide film (12), sidewalls (6) are formed on sides of the silicon oxide film (5), a gate insulating film (7) is formed on the main surface in a part where the channel region (50) is formed and a gate electrode (8) is formed to fill a recessed portion in an inversely tapered shape formed by the sides of the sidewalls (6) and the upper surface of the gate insulating film (7).
摘要:
A semiconductor device includes a silicon substrate (1), a pair of isolating insulation films (9), a channel region (2), a pair of source/drain regions (3), a pair of silicon oxide films (4) formed on an upper surface of the silicon substrate (1) so as to overlie the source/drain regions (3), and a gate structure (8) formed in a first recess defined by the upper surface of the silicon substrate (1) over the channel region (2) and side surfaces of the pair of silicon oxide films (4). The gate structure (8) includes a gate oxide film (5) formed on the upper surface of the silicon substrate (1), a pair of silicon oxide films (6) formed on lower part of the side surfaces of the pair of silicon oxide films (4), and a metal film (7) filling a second recess surrounded by upper part of the side surfaces of the silicon oxide films (4), the silicon oxide films (6) and the gate oxide film (5). A method of manufacturing the semiconductor device is provided which attains reduction in gate length without the decrease in driving capability to accomplish the increase in operating speed.
摘要:
Two source/drain regions (20) belonging to separate elements which are adjacent to each other are connected through a metal layer (14) having the same height as a height of a metal layer (10) forming a part of a gate electrode. In a manufacturing process, an insulating layer (8) is made of other material than and inserted between two insulating layers (7) and (16). The two insulating layers (7) and (16)function as molds for burying the metal layers (10), (14) and (15) therein and made of the same material. The metal layer (14) can therefore be formed at the same height as the height of the metal layer (10). Accordingly, portions to be connected through a wiring which are provided at a comparatively short distance are connected while reducing a wiring capacity.
摘要:
A substrate surface (10S) is thermally oxidized to form an oxide film. The oxide film is patterned so that the substrate surface (10S) in an active region is exposed. An oxide film (20) is thereby provided. An exposed substrate surface (10S) is thermally oxidized, to form a thermal oxide film. This thermal oxide film is thereafter removed at least in an element forming region. A silicon film (41) is epitaxially grown on the exposed substrate surface (10S). Thereafter the silicon film (41) is polished by CMP to an extent that an upper surface of the silicon film after polishing is not more than an upper surface of the oxide film (20) in height. Next, the surface of the silicon film is thermally oxidized to form a thermal oxide film. After ion implantation of various types, this thermal oxide film is removed.
摘要:
A semiconductor device less susceptible to inverse narrow channel effect and its manufacturing method are provided. A silicon nitride film (13) is adopted as element isolation regions; the silicon nitride film (13) has a smaller etch rate than a sacrificial silicon oxide film (7) which serves as a sacrificial layer during ion implantation (8). This prevents formation of recesses in the silicon nitride film (13) during the removal of the sacrificial silicon oxide film (7), which weakens the strength of the electric fields at the gate edges. Weakening the strength of the electric fields at the gate edges suppresses the inverse narrow channel effect, so that the MOS transistor offers a characteristic closer to a characteristic in which the threshold voltage keeps a constant value independently of the channel width. Thus an MOS transistor having a good characteristic can be manufactured.
摘要:
A substrate surface (10S) is thermally oxidized to form an oxide film. The oxide film is patterned so that the substrate surface (10S) in an active region is exposed. An oxide film (20) is thereby provided. An exposed substrate surface (10S) is thermally oxidized, to form a thermal oxide film. This thermal oxide film is thereafter removed at least in an element forming region. A silicon film (41) is epitaxially grown on the exposed substrate surface (10S). Thereafter the silicon film (41) is polished by CMP to an extent that an upper surface of the silicon film after polishing is not more than an upper surface of the oxide film (20) in height. Next, the surface of the silicon film is thermally oxidized to form a thermal oxide film. After ion implantation of various types, this thermal oxide film is removed.
摘要:
A method of manufacturing a semiconductor device is provided which, even if device dimensions decrease, prevents degradation in the operating characteristics of semiconductor elements which are isolated from each other by an element isolation region in a trench isolation structure. Implantation of ions (15) in a polycrystalline silicon layer (3) from above through a silicon nitride film (2) produces an ion-implanted polycrystalline silicon layer (16). Since the ions (15) are an ionic species of element which acts to enhance oxidation, the implantation of the ions (15) changes the polycrystalline silicon layer (3) into the ion-implanted polycrystalline silicon layer (16) having a higher oxidation rate. In subsequent formation of a thermal oxide film (21) on the inner wall of a trench (5), exposed part of the ion-implanted polycrystalline silicon layer (16) is also oxidized, forming relatively wide polycrystalline silicon oxide areas (21a).
摘要:
There is described a method of manufacturing a semiconductor device, wherein a DRAM memory cell and a logic circuit are fabricated on a single semiconductor substrate, which method enables improvements in the refresh characteristics of the DRAM memory cell by preventing a leakage current from developing and enables improvements in the reliability of the semiconductor device, reduces power consumption, and enables improvements in the performance and processing speed of integrated circuits by assembly of the integrated circuits into a single chip. After formation of a polysilicon layer which is to act as gate electrodes, silicon nitride films are formed so as to cover source/drain regions of the DRAM memory cell and to cause other source/drain regions and the polysilicon layer to be exposed. A metal silicide layer is formed on the semiconductor substrate by means of self-aligned silicide technique.
摘要:
To manufacture in high productivity a semiconductor device capable of securely achieving element isolation by a trench-type element isolation and capable of effectively preventing potentials of adjacent elements from affecting other nodes, a method of manufacturing the semiconductor device includes: a step of forming a first layer on a substrate; a step of forming a trench by etching the first layer and the substrate; a step of thermally oxidizing an inner wall of the trench; a step of depositing a first conductive film having a film thickness equal to or larger than one half of the trench width of the trench on the substrate including the trench; a step of removing a first conductive film from the first layer by a CMP method and keeping the first conductive film left in only the trench; a step of anisotropically etching the first conductive film within the trench to adjust the height of the conductive film to become lower than the height of the surface of the substrate; a step of depositing an insulating film on the first conductive film by the CVD method to embed the upper part of the first conductive film within the trench; a step of flattening the insulating film by the CMP method; and a step of removing the first layer.