摘要:
There is described a method of manufacturing a semiconductor device, wherein a DRAM memory cell and a logic circuit are fabricated on a single semiconductor substrate, which method enables improvements in the refresh characteristics of the DRAM memory cell by preventing a leakage current from developing and enables improvements in the reliability of the semiconductor device, reduces power consumption, and enables improvements in the performance and processing speed of integrated circuits by assembly of the integrated circuits into a single chip. After formation of a polysilicon layer which is to act as gate electrodes, silicon nitride films are formed so as to cover source/drain regions of the DRAM memory cell and to cause other source/drain regions and the polysilicon layer to be exposed. A metal silicide layer is formed on the semiconductor substrate by means of self-aligned silicide technique.
摘要:
An object is to obtain a semiconductor device in which channel length is reduced without increasing the gate resistance to realize higher operation speed and its manufacturing method. An MOSFET has a trench-type element isolation structure (2) formed in the main surface of a semiconductor substrate (1), a pair of extensions (3) and source/drain regions (4) selectively formed in the main surface of the semiconductor substrate (1) to face each other through a channel region (50), a silicon oxide film (5) formed on the trench-type element isolation structure (2) and on the source/drain regions (4) through a silicon oxide film (12), sidewalls (6) formed on sides of the silicon oxide film (5), a gate insulating film (7) formed on the main surface of the semiconductor substrate (1) in the part in which the channel region (50) is formed, and a gate electrode (8) formed to fill a recessed portion in an inversely tapered form formed by the sides of the sidewalls (6) and the upper surface of the gate insulating film (7).
摘要:
Two source/drain regions (20) belonging to separate elements which are adjacent to each other are connected through a metal layer (14) having the same height as a height of a metal layer (10) forming a part of a gate electrode. In a manufacturing process, an insulating layer (8) is made of other material than and inserted between two insulating layers (7) and (16). The two insulating layers (7) and (16)function as molds for burying the metal layers (10), (14) and (15) therein and made of the same material. The metal layer (14) can therefore be formed at the same height as the height of the metal layer (10). Accordingly, portions to be connected through a wiring which are provided at a comparatively short distance are connected while reducing a wiring capacity.
摘要:
A semiconductor device includes a silicon substrate (1), a pair of isolating insulation films (9), a channel region (2), a pair of source/drain regions (3), a pair of silicon oxide films (4) formed on an upper surface of the silicon substrate (1) so as to overlie the source/drain regions (3), and a gate structure (8) formed in a first recess defined by the upper surface of the silicon substrate (1) over the channel region (2) and side surfaces of the pair of silicon oxide films (4). The gate structure (8) includes a gate oxide film (5) formed on the upper surface of the silicon substrate (1), a pair of silicon oxide films (6) formed on lower part of the side surfaces of the pair of silicon oxide films (4), and a metal film (7) filling a second recess surrounded by upper part of the side surfaces of the silicon oxide films (4), the silicon oxide films (6) and the gate oxide film (5). A method of manufacturing the semiconductor device is provided which attains reduction in gate length without the decrease in driving capability to accomplish the increase in operating speed.
摘要:
A semiconductor device and manufacturing method including a MOSFET having a trench-type element isolation structure (2) formed on a main surface of a semiconductor substrate (1). A pair of extensions (3) and source/drain regions (4) are selectively formed in the main surface so as to face each other through a channel region (50), a silicon oxide film (5) is formed on the trench-type element isolation structure (2) and on the source/drain regions (4) through a silicon oxide film (12), sidewalls (6) are formed on sides of the silicon oxide film (5), a gate insulating film (7) is formed on the main surface in a part where the channel region (50) is formed and a gate electrode (8) is formed to fill a recessed portion in an inversely tapered shape formed by the sides of the sidewalls (6) and the upper surface of the gate insulating film (7).
摘要:
An object is to obtain a method of manufacturing semiconductor devices having trench isolation structure which accomplishes simplification of manufacturing process without deterioration of polishing uniformity. After a silicon oxide film (5) is deposited an HDP-CVD method, a polysilicon film (6) is deposited to such a thickness that the polysilicon film (6) on upper regions of raised areas is removed and the polysilicon film (6) in recessed areas remains in a first CMP process and that the polysilicon film (6) serves as a mask in a later etching process. Subsequently, the first CMP process is performed and the etching process to the silicon oxide film (5) is performed by using the polysilicon film (6) after the first CMP process as a mask to remove the silicon oxide film (5) in the upper regions of the raised areas, and a second CMP process is further performed to planarize the semiconductor substrate (1).
摘要:
A method of manufacturing a thin film transistor array substrate according to the present invention includes: forming a pattern made of a first conductive film; stacking a gate insulating film, a semiconductor layer, and a resist in the stated order; forming a resist pattern having a step structure in a thickness direction; forming an exposed area of the first conductive film and a pattern of the semiconductor layer by using the resist pattern; forming a pattern made of a second conductive film in contact with the first conductive film in the exposed area of the first conductive film; and forming a pattern made of a third conductive film. The first conductive film forms a gate electrode, and the second conductive film forms each of a source electrode and a drain electrode. The third conductive film forms a pixel electrode, and the second conductive film is coated with an upper-layer film.
摘要:
A semiconductor device comprises a glass substrate serving as a substrate having an insulated surface and a silicon layer located on a position overlapping with this glass substrate. The silicon layer includes an amorphous gettering region. Preferably, the silicon layer includes a main region serving as an active element region, and the gettering region is preferably included in the remaining portion of the silicon layer excluding the main region. Preferably, the silicon layer may include a portion serving as an active region of a thin-film transistor.
摘要:
An island-like semiconductor layer is formed on a main surface of an insulating substrate. A side wall of the island-like semiconductor layer is made substantially perpendicular to the insulating substrate. An insulating film is formed along the side wall of the semiconductor layer. The insulating film is formed to include a slanted face and have a sectional shape in which a width measured from the side wall of the semiconductor layer decreases as a distance to a bottom increases. A gate insulating film can be formed on the semiconductor layer with good step coverage because of inclusion of the insulating film, to preclude a possibility of causing disconnection of a gate electrode. Also, a thickness of a portion of the semiconductor layer in which a channel region is formed is uniform, to obtain stable transistor characteristics.
摘要:
A semiconductor device capable of holding multibit information in one memory cell, and a method of manufacturing the semiconductor device. A trench is formed in a channel portion of an MONOS transistor. Then, a source side portion and a drain side portion in a silicon nitride film of a gate insulating film which interpose the trench are caused to function as first and second electric charge holding portions capable of holding electric charges. In the case in which first electric charges are trapped on the drain side and second electric charges are trapped on the source side, a portion of a gate electrode in the trench functions as a shield. If a fixed potential is given to the gate electrode, the second electric charge holding portion is not influenced by an electric field induced by the first electric charges so that the trapping of the second electric charges is not inhibited.