摘要:
Propylene oxide is added to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst in an amount of from 0.05 to 0.5 mole per mole of the active hydrogen compound at a reaction temperature of from 60 to 98.degree. C. at a reaction pressure less than or equal to 4 kg/cm.sup.2 to prepare a polyoxyalkylene polyol which has a hydroxyl value of from 10 to 35 mg KOH/g, a monool content less than or equal to 15 mol %, a Head-to-Tail bond selectivity greater than or equal to 96 percent, and low viscosity. A polymer polyol is prepared by polymerizing an ethylenically unsaturated monomer in the polyoxyalkylene polyol. A flexible polyurethane foam is prepared by reacting the polyoxyalkylene polyol or the polymer polyol with an organic polyisocyanate compound in the presence of a foaming agent, a catalyst, a surfactant, a crosslinking agent and other additives. The thus-obtained polyurethane foams have less closed cells and are more excellent in properties such as hardness, humid aged compression set and impact resiliency.
摘要:
Propylene oxide is added to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst in an amount of from 0.05 to 0.5 mole per mole of the active hydrogen compound at a reaction temperature of from 60.degree. to 98.degree. C. at a reaction pressure less than or equal to 4 kg/cm.sup.2 to prepare a polyoxyalkylene polyol which has a hydroxyl value of from 10 to 35 mg KOH/g, a monool content less than or equal to 15 mol %, a Head-to-Tail bond selectivity greater than or equal to 96 percent, and low viscosity. A polymer polyol is prepared by polymerizing an ethylenically unsaturated monomer in the polyoxyalkylene polyol. A flexible polyurethane foam is prepared by reacting the polyoxyalkylene polyol or the polymer polyol with an organic polyisocyanate compound in the presence of a foaming agent, a catalyst, a surfactant, a crosslinking agent and other additives. The thus-obtained polyurethane foams have less closed cells and are more excellent in properties such as hardness, humid aged compression set and impact resiliency.
摘要:
An alkali metal compound such as metallic cesium, cesium hydroxide, cesium hydroxide monohydrate, metallic rubidium, rubidium hydroxide or rubidium hydroxide monohydrate is used as a catalyst, crude polyoxyalkylene polyol containing the catalyst is neutralized with a mineral acid or an organic acid, an aqueous solution layer containing an alkali metal salt is brought into contact with an anion exchange resin to adsorb mineral acid anion or organic acid anion, the alkali metal compound catalyst is recovered, alkylene oxide undergoes ring-opening addition polymerization on an active hydrogen compound in the presence of the recovered alkali metal compound catalyst to prepare polyoxyalkylene polyol, the catalyst is thereafter separated, recovered and reused, and such recycle of the alkali metal compound catalyst provides an economical process.
摘要:
An alkali metal compound such as metallic cesium, cesium hydroxide, cesium hydroxide monohydrate, metallic rubidium, rubidium hydroxide or rubidium hydroxide monohydrate is used as a catalyst, crude polyoxyalkylene polyol containing the catalyst is neutralized with a mineral acid or an organic acid, an aqueous solution layer containing an alkali metal salt is brought into contact with an anion exchange resin to adsorb mineral acid anion or organic acid anion, the alkali metal compound catalyst is recovered. alkylene oxide undergoes ring-opening addition polymerization on an active hydrogen compound in the presence of the recovered alkali metal compound catalyst to prepare polyoxyalkylene polyol, the catalyst is thereafter separated, recovered and reused, and such recycle of the alkali metal compound catalyst provides an economical process.
摘要:
The present invention provides a polyester polyol, preferably a plant-derived polyester polyol, suitable for a composition for polyurethane foam that contributes to the reduction of load on the environment and has a good balance of high resilience, moderate hardness, and high durability as a cushioning material for vehicle seat cushions. A polyester polyol having a hydroxyl value in the range of 15 to 100 mgKOH/g according to the present invention is produced by a condensation of raw materials comprising at least one selected from the group consisting of fatty acids having a hydroxy group and fatty acid esters having a hydroxy group with a polyhydric alcohol having an average number of functional groups of more than three but not more than eight. The raw materials contain 90% to 100% by mass of a fatty acid having a hydroxy group and a fatty acid ester having a hydroxy group in total.
摘要:
Highly-functionalized, low-viscosity polyether polyols are obtained by dehydration condensation reaction of alcohols.The polyether polyols are obtained by dehydration condensation of glycerin and monohydric and/or dihydric alcohol with the glycerin percentage being more than 50 mol % relative to 100 mol % of the total of the glycerin and alcohol. The glycerin may be crude glycerin obtained by hydrolysis or alcoholysis of natural fat and oils.
摘要:
Highly-functionalized, low-viscosity polyether polyols are obtained by dehydration condensation reaction of alcohols.The polyether polyols are obtained by dehydration condensation of glycerin and monohydric and/or dihydric alcohol with the glycerin percentage being more than 50 mol % relative to 100 mol % of the total of the glycerin and alcohol. The glycerin may be crude glycerin obtained by hydrolysis or alcoholysis of natural fat and oils.
摘要:
A flexible polyurethane foam produced by contacting the polyol composition (A) comprising a polyether polyol (an amine value: 400 to 600 mg KOH/g, a hydroxyl value: 350 to 700 mg KOH/g), which is the adduct of an alkylene oxide to a compound selected from following formulas (1) and (2), with an organic polyisocyanate in the presence of water wherein R1 and R2 represent H or (CH)n—NH2 (n: 1-3), R3-R6 and R7 represent H or an alkyl group or alkenyl group having 1 to 4 carbon atoms, and k and m represent 1 to 6. The flexible polyurethane foam exhibits sufficient physical properties and reduced volatile amine components. The flexible polyurethane foam can be used to provide excellent seat pads and sound absorbing materials for automobiles.