摘要:
Propylene oxide is added to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst in an amount of from 0.05 to 0.5 mole per mole of the active hydrogen compound at a reaction temperature of from 60.degree. to 98.degree. C. at a reaction pressure less than or equal to 4 kg/cm.sup.2 to prepare a polyoxyalkylene polyol which has a hydroxyl value of from 10 to 35 mg KOH/g, a monool content less than or equal to 15 mol %, a Head-to-Tail bond selectivity greater than or equal to 96 percent, and low viscosity. A polymer polyol is prepared by polymerizing an ethylenically unsaturated monomer in the polyoxyalkylene polyol. A flexible polyurethane foam is prepared by reacting the polyoxyalkylene polyol or the polymer polyol with an organic polyisocyanate compound in the presence of a foaming agent, a catalyst, a surfactant, a crosslinking agent and other additives. The thus-obtained polyurethane foams have less closed cells and are more excellent in properties such as hardness, humid aged compression set and impact resiliency.
摘要:
Propylene oxide is added to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst in an amount of from 0.05 to 0.5 mole per mole of the active hydrogen compound at a reaction temperature of from 60 to 98.degree. C. at a reaction pressure less than or equal to 4 kg/cm.sup.2 to prepare a polyoxyalkylene polyol which has a hydroxyl value of from 10 to 35 mg KOH/g, a monool content less than or equal to 15 mol %, a Head-to-Tail bond selectivity greater than or equal to 96 percent, and low viscosity. A polymer polyol is prepared by polymerizing an ethylenically unsaturated monomer in the polyoxyalkylene polyol. A flexible polyurethane foam is prepared by reacting the polyoxyalkylene polyol or the polymer polyol with an organic polyisocyanate compound in the presence of a foaming agent, a catalyst, a surfactant, a crosslinking agent and other additives. The thus-obtained polyurethane foams have less closed cells and are more excellent in properties such as hardness, humid aged compression set and impact resiliency.
摘要:
The object is to provide a method for producing a polyoxyalkylene polyol and a method for producing a derivative thereof wherein the remaining catalyst compound is efficiently removed from a crude polyoxyalkylene polyol by a simple manner, and a method for producing a polyoxyalkylene polyol wherein a crude polyoxyalkylene polyol is produced by addition polymerization of an epoxide compound to an active hydrogen compound using as a catalyst a compound having a P═N bond, then, the crude polyoxyalkylene polyol is allowed to contact with a solid acid having a specific surface area of 450 to 1200 m2/g and an average pore diameter of 40 to 100 Å to control the catalyst-remaining amount in the polyoxyalkylene polyol to 150 ppm or less, and a method for producing a derivative of the-above-described polyol are provided.
摘要:
An alkali metal compound such as metallic cesium, cesium hydroxide, cesium hydroxide monohydrate, metallic rubidium, rubidium hydroxide or rubidium hydroxide monohydrate is used as a catalyst, crude polyoxyalkylene polyol containing the catalyst is neutralized with a mineral acid or an organic acid, an aqueous solution layer containing an alkali metal salt is brought into contact with an anion exchange resin to adsorb mineral acid anion or organic acid anion, the alkali metal compound catalyst is recovered, alkylene oxide undergoes ring-opening addition polymerization on an active hydrogen compound in the presence of the recovered alkali metal compound catalyst to prepare polyoxyalkylene polyol, the catalyst is thereafter separated, recovered and reused, and such recycle of the alkali metal compound catalyst provides an economical process.
摘要:
An alkali metal compound such as metallic cesium, cesium hydroxide, cesium hydroxide monohydrate, metallic rubidium, rubidium hydroxide or rubidium hydroxide monohydrate is used as a catalyst, crude polyoxyalkylene polyol containing the catalyst is neutralized with a mineral acid or an organic acid, an aqueous solution layer containing an alkali metal salt is brought into contact with an anion exchange resin to adsorb mineral acid anion or organic acid anion, the alkali metal compound catalyst is recovered. alkylene oxide undergoes ring-opening addition polymerization on an active hydrogen compound in the presence of the recovered alkali metal compound catalyst to prepare polyoxyalkylene polyol, the catalyst is thereafter separated, recovered and reused, and such recycle of the alkali metal compound catalyst provides an economical process.
摘要:
Propylene oxide is added to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst in an amount of from 0.05 to 0.5 mole per mole of the active hydrogen compound at a reaction temperature of from 60 to 98.degree. C. at a reaction pressure less than or equal to 4 kg/cm.sup.2 to prepare a polyoxyalkylene polyol which has a hydroxyl value of from 10 to 35 mg KOH/g, a monool content less than or equal to 15 mol %, a Head-to-Tail bond selectivity greater than or equal to 96 percent, and low viscosity. A polymer polyol is prepared by polymerizing an ethylenically unsaturated monomer in the polyoxyalkylene polyol. A flexible polyurethane foam is prepared by reacting the polyoxyalkylene polyol or the polymer polyol with an organic polyisocyanate compound in the presence of a foaming agent, a catalyst, a surfactant, a crosslinking agent and other additives. The thus-obtained polyurethane foams have less closed cells and are more excellent in properties such as hardness, humid aged compression set and impact resiliency.
摘要:
High concentration-low viscosity polymer-polyols are prepared by polymerizing mixtures of acrylonitrile and styrene in polyols, which are free of any polymerizable carbon-carbon double bond, in the presence of alkyl-substituted tertiary amines. Without use, as a dispersion stabilizer, of organic compounds which have a polymerizable carbon-carbon double bond and terminal hydroxyl groups, there can be obtained polymer-polyols which have a concentration of the polymer of 33-60 wt % and a glass transition temperature of the polymer of 90.degree.-120.degree. C.
摘要:
High concentration-low viscosity polymer-polyols are prepared by polymerizing mixtures of acrylonitrile and styrene in polyols, which are free of any polymerizable carbon-carbon double bond, in the presence of alkyl-substituted tertiary mines. Without use, as a dispersion stabilizer, of organic compounds which have a polymerizable carbon-carbon double bond and terminal hydroxyl groups, there can be obtained polymer-polyols which have a concentration of the polymer of 33-60 wt % and a glass transition temperature of the polymer of 90.degree.-120.degree. C.
摘要:
The present invention is a polyoxyalkylene polyol, its manufacture method, and derivatives, wherein: it is obtained using a phosphazenium compound as a catalyst; the hydroxyl value is 2˜200 mgKOH/g; total degree of unsaturation is 0.0001˜0.07 meq./g; the head-to-tail bond selectivity of the polyoxyalkylene polyol is 95 mole %; and when the maximum height of the peak of GPC elution curve is set to be 100%, W20 is defined as the peak width at the 20% peak height, and W80 is defined as the peak width at 80% peak height, the ratio of W20/W80 is 1.5 or greater, and less than 3.
摘要:
A polymer dispersed polyol having a vinyl polymer dispersed in polyol, the vinyl polymer comprising containing 5 to 80 wt % of acrylamide compound (A) represented by the formula (1):CH.sub.2 .dbd.CR.sup.1 CONR.sup.2 R.sup.3 (1)wherein R.sup.1, R.sup.2 and R.sup.3 are a hydrogen atom or hydrocarbon group having 1 to 10 carbon atoms, 0 to 70 wt % of one or more monomer (B) selected from acrylonitrile and methacrylonitrile, and 0 to 95 wt % of a vinyl monomer (C) which can copolymerize with (A) and (B), and 95 to 20 wt % of the total amount of (B) and (C); and when (C) is 0 wt %, (A) is the polymer of a vinyl monomer mixture containing an acrylamide derivative represented by the formula (2):CH.sub.2 .dbd.CR.sup.4 CONR.sup.5 R.sup.6 (2)wherein R.sup.4, R.sup.5 and R.sup.6 are a hydrogen atom or hydrocarbon group having 1 to 10 carbon atoms, and not simultaneously the hydrogen atom; and said polyol comprising containing 5 to 50 wt % of the vinyl polymer, and flame retardant polyurethane resin and flame retardant polyurethane foam which are prepared from the same.