摘要:
A copper compound-carried titanium oxide photocatalyst which is excellent in a photocatalytic activity and a viral inactivation property and a production process for the same can be provided by a copper compound-carried titanium oxide photocatalyst comprising titanium oxide in which a content of rutile type titanium oxide is 50% by mole or more and a monovalent copper compound and a divalent copper compound which are carried on a surface of the titanium oxide described above and a production process for a copper compound-carried titanium oxide photocatalyst, comprising a step of carrying a monovalent copper compound and a divalent copper compound on a surface of titanium oxide in which a content of rutile type titanium oxide is 50% by mole or more.
摘要:
A copper compound-carried titanium oxide photocatalyst which is excellent in a photocatalytic activity and a viral inactivation property and a production process for the same can be provided by a copper compound-carried titanium oxide photocatalyst comprising titanium oxide in which a content of rutile type titanium oxide is 50% by mole or more and a monovalent copper compound and a divalent copper compound which are carried on a surface of the titanium oxide described above and a production process for a copper compound-carried titanium oxide photocatalyst, comprising a step of carrying a monovalent copper compound and a divalent copper compound on a surface of titanium oxide in which a content of rutile type titanium oxide is 50% by mole or more.
摘要:
An agent for virus inactivation capable of exhibiting inactivation action based on structural destruction such as degradation and decomposition against viruses, which comprises a monovalent copper compound such as cuprous oxide, cuprous sulfide, cuprous iodide, and cuprous chloride as an active ingredient, and a virus inactivation material, which contains the agent for virus inactivation on a surface of a substrate and/or inside of the substrate.
摘要:
An agent for virus inactivation capable of exhibiting inactivation action based on structural destruction such as degradation and decomposition against viruses, which comprises a monovalent copper compound such as cuprous oxide, cuprous sulfide, cuprous iodide, and cuprous chloride as an active ingredient, and a virus inactivation material, which contains the agent for virus inactivation on a surface of a substrate and/or inside of the substrate.
摘要:
Provided are a hybridoma cell CGMCC No. 4783 that secretes a monoclonal antibody of an anti-cyanobacteria cell surface antigen, and the secreted monoclonal antibody thereof. Also provided are an anti-cyanobacteria recombinant antibody polypeptide, encoding gene, preparation method and use thereof. The anti-cyanobacteria recombinant antibody polypeptide is composed of an anti-cyanobacteria antibody mimetic polypeptide operably linearly connecting to the carboxyl terminal of an Escherichia coli polypeptide. The anti-cyanobacteria antibody mimetic polypeptide is a polypeptide with cyanobacteria identifying and binding capability designed based on an antigen binding fragment of the monoclonal antibody secreted by the CGMCC No. 4783 hybridoma cell. The anti-cyanobacteria recombinant antibody polypeptide directly form an ion channel on the cell membrane of a cyanobacteria to kill the cyanobacteria, targeted killing the cyanobacteria (prokaryote) without killing other beneficial eukaryotic cell algae.
摘要:
The present invention belongs to field of biology and medicine, and especially relates to a novel antibiotic comprising an antibody mimetic antibody, its preparation methods and uses thereof. A novel antibiotic comprising a antibody mimetic covalently bonded to the carboxyl end of a colicin polypeptide or a channel-forming domain polypeptide of a colicin, wherein said colicin is selected from the group consisting of Colicin E1, Ia, Ib, A, B, N; wherein said antibody mimetic being yielded by fusing two complementarity determining regions (CDRs), VHCDR1 and VLCDR3 through a cognate framework region (VHFR2) of an immunoglobulin; wherein said the immunoglobulin specifically recognizes the bacterial porins. Its antibacterial ability is a thousandfold powerful than normal antibiotics. Due to its unique action mechanism, drug resistance resulted in mutation can hardly be acquired by pathogenic bacteria. And the antibiotic will not hurt normal human cells when it kills pathogenic bacteria. Therefore, it can be used for manufacturing antibacterial medicament of killing Neisseria meningitidis, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, multidrug-resistance Pseudomonas aeruginosa or Mycobacterium tuberculosis.
摘要:
Provided are a hybridoma cell CGMCC No. 4783 that secretes a monoclonal antibody of an anti-cyanobacteria cell surface antigen, and the secreted monoclonal antibody thereof. Also provided are an anti-cyanobacteria recombinant antibody poly-peptide, encoding gene, preparation method and use thereof. The anti-cyanobacteria recombinant antibody polypeptide is composed of an anti-cyanobacteria antibody mimetic polypeptide operably linearly connecting to the carboxyl terminal of an Escherichia coli polypeptide. The anti-cyanobacteria antibody mimetic polypeptide is a polypeptide with cyanobacteria identifying and binding cap-ability designed based on an antigen binding fragment of the monoclonal antibody secreted by the CGMCC No.4783 hybridoma cell. The anti-cyanobacteria recombinant antibody polypeptide directly form an ion channel on the cell membrane of a cyanobacteria to kill the cyanobacteria, targeted killing the cyanobacteria (prokaryote) without killing other beneficial eukaryotic cell algae.
摘要:
The present invention belongs to field of biology and medicine, and especially relates to a novel antibiotic, its nucleotide sequence, methods of construction and uses thereof. A novel antibiotic, wherein the end of any peptide of the allosteric colicin is connected linearly to the end of peptide of the Staphylococcus aureus pheromone AgrD I, AgrD II, AgrD III, AgrD IV or Staphylococcus epidermidis pheromone. Wherein the allosteric colicin being yielded by artificially mutating the amino acid residues G11A, H22R, A26G, V31L and H40K in the peptide chain of wild type Colicin E1, Ia, Ib, A, B, N, or their ion channel-forming structural domain. In comparison with the traditional antibiotics, the novel antibiotics in the present invention are not likely to lead to drug resistance and cause hypersensitivity reaction.
摘要:
The present invention belongs to field of biology and medicine, and especially relates to a novel antibiotic comprising an antibody mimetic antibody, its preparation methods and uses thereof. A novel antibiotic comprising a antibody mimetic covalently bonded to the carboxyl end of a colicin polypeptide or a channel-forming domain polypeptide of a colicin, wherein said colicin is selected from the group consisting of Colicin E1, Ia, Ib, A, B, N; wherein said antibody mimetic being yielded by fusing two complementarity determining regions (CDRs), VHCDR1 and VLCDR3 through a cognate framework region (VHFR2) of an immunoglobulin; wherein said the immunoglobulin specifically recognizes the bacterial porins. Its antibacterial ability is a thousandfold powerful than normal antibiotics. Due to its unique action mechanism, drug resistance resulted in mutation can hardly be acquired by pathogenic bacteria. And the antibiotic will not hurt normal human cells when it kills pathogenic bacteria. Therefore, it can be used for manufacturing antibacterial medicament of killing Neisseria meningitidis, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, multidrug-resistance Pseudomonas aeruginosa or Mycobacterium tuberculosis.
摘要:
Engineered antibiotic peptides and the preparation thereof are provided. The engineered antibiotic peptides, designated pheromonicins, are prepared by linking different bacteriocins or their functional domains with bacterial pheromones. Also provided are methods for treating bacterial infections by use of the antibiotic peptides.