摘要:
The present invention provides a microfluidic device with a micro-pump system in which the production process is simplified and the device is further downsized. A microfluidic device 1 has a gas generation portion 3. The gas generation portion 3 has a substrate 10 and a gas generation layer 20. The substrate 10 has a first main surface 10a and a second main surface 10b. The substrate 10 has a micro-channel 14 with an opening at least on the first main surface 10a. The gas generation layer 20 is disposed on the first main surface 10a of the substrate 10 so as to cover an opening 14a. The gas generation layer 20 generates gas by receiving an external stimulus.
摘要:
The present invention provides a microfluidic device with a micro-pump system in which the production process is simplified and the device is further downsized. A microfluidic device 1 has a gas generation portion 3. The gas generation portion 3 has a substrate 10 and a gas generation layer 20. The substrate 10 has a first main surface 10a and a second main surface 10b. The substrate 10 has a micro-channel 14 with an opening at least on the first main surface 10a. The gas generation layer 20 is disposed on the first main surface 10a of the substrate 10 so as to cover an opening 14a. The gas generation layer 20 generates gas by receiving an external stimulus.
摘要:
The present invention provides a photoresponsive gas-generating material that is to be used in a micropump of a microfluid device having fine channels formed therein, and is capable of effectively generating gases for transporting a microfluid in response to light irradiation and transporting the microfluid at an improved transport efficiency. The present invention also provides a micropump incorporating the photoresponsive gas-generating material.A photoresponsive gas-generating material 13 is to be used in a micropump having fine channels formed in a substrate, and comprises a photo-sensitive acid-generating agent and an acid-sensitive gas-generating agent, and a micropump 10 has the photoresponsive gas-generating material 13 housed therein.
摘要:
To provide a micropump device having good controllability over the amount of gas generated from the gas generating material and thus the amount of liquid fed by the micropump. The micropump device includes a micropump 10 and a controller 50. The micropump 10 includes: a microchannel 22 serving as a channel for liquid; a gas generating material 34 generating a gas upon exposure to light and supplying the gas to the microchannel 22; and a light source 42 for irradiating the gas generating material 34 with light 44. The controller 50 supplies to the light source 42 a control pulse signal CS that causes the light source 42 to blink on and off in a binary manner by repeating a pulse train pattern composed of a fixed number of bits each capable of having two states, one of which is a first level allowing the light source 42 to be turned on and the other of which is a second level allowing the light source 42 to be turned off.
摘要:
To provide a micropump device having good controllability over the amount of gas generated from the gas generating material and thus the amount of liquid fed by the micropump. The micropump device includes a micropump 10 and a controller 50. The micropump 10 includes: a microchannel 22 serving as a channel for liquid; a gas generating material 34 generating a gas upon exposure to light and supplying the gas to the microchannel 22; and a light source 42 for irradiating the gas generating material 34 with light 44. The controller 50 supplies to the light source 42 a control pulse signal CS that causes the light source 42 to blink on and off in a binary manner by repeating a pulse train pattern composed of a fixed number of bits each capable of having two states, one of which is a first level allowing the light source 42 to be turned on and the other of which is a second level allowing the light source 42 to be turned off.
摘要:
The present invention provides a photoresponsive gas-generating material that is to be used in a micropump of a microfluid device having fine channels formed therein, and is capable of effectively generating gases for transporting a microfluid in response to light irradiation and transporting the microfluid at an improved transport efficiency. The present invention also provides a micropump incorporating the photoresponsive gas-generating material.A photoresponsive gas-generating material 13 is to be used in a micropump having fine channels formed in a substrate, and comprises a photo-sensitive acid-generating agent and an acid-sensitive gas-generating agent, and a micropump 10 has the photoresponsive gas-generating material 13 housed therein.
摘要:
The present invention aims to provide an adhesive composition which has high initial adhesion and can strongly fix an adherend, while can be peeled off easily by light irradiation even after undergoing a high-temperature process at 200° C. or higher. The present invention also aims to provide an adhesive tape produced from the adhesive composition, and wafer treatment method using the adhesive composition. The present invention provides an adhesive composition including an adhesive component, a photoinitiator, and a silicone compound containing a functional group that is crosslinkable with the adhesive component.
摘要:
Obtained is a dicing and die bonding tape that makes it possible to pick up a semiconductor chip easily and reliably in dicing a semiconductor wafer to pickup the semiconductor chip together with the whole die bonding film. A dicing and die bonding tape used in dicing of a wafer, in obtaining a semiconductor chip, and in die bonding of the semiconductor chip, the dicing and die bonding tape having a die bonding film 3, and a non pressure sensitive adhesive film 4 bonded on one surface of the die bonding film 3, the separation strength between the die bonding film 3 and the non pressure sensitive adhesive film 4 being within a range of 1 to 6 N/m, the shear strength between the die bonding film 3 and the non pressure sensitive adhesive film 4 being 0.3 to 2 N/mm2.
摘要翻译:获得的是切割和芯片粘合胶带,使得可以容易且可靠地拾取半导体芯片以切割半导体晶片以与整个芯片接合膜一起拾取半导体芯片。 用于切割晶片,获得半导体芯片以及半导体芯片的芯片接合,具有芯片接合薄膜3的切割和芯片粘合带以及粘结的非压敏粘合薄膜4的切割和芯片粘结胶带 在芯片接合薄膜3的一个表面上,芯片接合薄膜3和非压敏粘合薄膜4之间的分离强度在1至6N / m的范围内,芯片接合薄膜3与裸片接合薄膜3之间的剪切强度 非压敏粘合膜4为0.3〜2N / mm 2。
摘要:
An object of the present invention is to provide an adhesive substance capable of being easily peeled off without damaging an adherend by giving stimulation thereto, a tape employing this adhesive substance, and a method for peeling off the adhesive substance. An adhesive substance, which contains a gas-generating agent for generating gas by stimulation, gas generated from said gas-generating agent being discharged to the outside of said adhesive substance so as not to foam said adhesive substance, and gas generated from said gas-generating agent peeling at least part of an adhesive surface of said adhesive substance off an adherend so as to decrease adhesive strength.
摘要:
It is an object of the invention to provide a method for manufacturing an IC chip wherein a wafer is prevented from being damaged and the ease of handling thereof is improved so that the wafer can be appropriately processed into IC chips, even if a thickness of the wafer is extremely reduced to approximately 50 μm.The invention provides a method for manufacturing an IC chip comprising, at least: the step of securing a wafer to a support plate via a support tape having a surface layer comprising an adhesive (A) containing a gas generating agent for generating a gas due to stimulation and a surface layer comprising an adhesive (B); the step of polishing said wafer with securing said wafer to said support plate via said support tape; the step of adhering a dicing tape to said polished wafer; the step of providing said stimulation to said adhesive (A) layer; the step of removing said support tape from said wafer; and the step of dicing said wafer, which comprises adhering said surface layer comprising adhesive (A) to said wafer and adhering said surface layer comprising adhesive (B) to said support plate in the step of securing said wafer to said support plate via said support tape, providing said stimulation while uniformly sucking under reduced pressure the entirety of said wafer from the dicing tape side thereof, and then removing said support tape from said wafer in the step of providing stimulation to said adhesive (A) layer and in the step of removing said support tape from said wafer.