摘要:
A semiconductor memory device includes: plural semiconductor memory chips to store information depending on an amount of accumulated charge; plural parameter storage units provided in correspondence with the semiconductor memory chips, each parameter to store therein a parameter that defines an electrical characteristic of a signal used for writing information into or reading information from a corresponding one of the semiconductor memory chips; an error correction encoding unit configured to generate a first correction code capable of correcting an error in the information stored in a number of semiconductor memory chips no greater than a predetermined number out of the semiconductor memory chips, from the information stored in the semiconductor memory chips; and a parameter processing unit configured to change the parameters respectively corresponding to the number of semiconductor memory chips no greater than the predetermined number, and write the parameters changed into the parameter storage units, respectively.
摘要:
According to an embodiment, a memory system includes semiconductor memories each having a plurality of blocks; a first table; a receiving unit; a generating unit; a second table; and a writing unit. The first table includes a plurality of memory areas each associated with each block and in each of which defect information is stored. The generating unit generates a set of blocks by selecting one block to which data are to be written in each semiconductor memory based on an index number indicating one of a plurality of rows in the first table and the first table. In the second table, an index number and a channel number are stored for each logical block address in association with one another. When a write command is received by the receiving unit, the writing unit writes data to a block associated with a selected channel number among blocks constituting the set.
摘要:
A volatile management memory stores management information for managing a use state of a storage medium. A management information storing unit divides the management information into plural division pieces and individually stores them in the storage medium. A main controller receives a command from a host device while the division pieces are being stored, performs data processing for the storage medium in response to the command between each division piece is stored, updates the management information divided into the division pieces according to the data processing content, and creates a log representing an update content of the management information. A log storing unit stores the log in the storage medium. A restoring unit reads the division pieces stored in the storage medium to the management memory as the management information, updates the management information according to the log stored in the storage medium, and restores the updated management information.
摘要:
According to one embodiment, a controller controls writing into and reading from a storage apparatus that includes a first data-storage unit and a second data-storage unit. The second data-storage unit stores user data and parity data of the user data. The first data-storage unit stores the parity data. The controller includes a parity updating unit and a parity writing unit. When parity data is updated, the parity updating unit writes the updated parity data into the first data-storage unit. When a certain requirement is satisfied, the parity writing unit reads the parity data written in the first data-storage unit, and writes the parity data thus read into the second data-storage unit.
摘要:
As a semiconductor storage device that can efficiently perform a refresh operation, provided is a semiconductor storage device comprising a non-volatile semiconductor memory storing data in blocks, the block being a unit of data erasing, and a controlling unit monitoring an error count of data stored in a monitored block selected from the blocks and refreshing data in the monitored block in which the error count is equal to or larger than a threshold value.
摘要:
When data in one semiconductor memory device is corrupted during a padding process by a padding unit and the data cannot be recovered even by using an error correcting code for correcting a data error, a storage control device issues a data recovery request to a data recovery device. The data recovery device reads the data from other semiconductor memory device in response to the data recovery request to recover the data, and returns a recovery result to the padding unit in the storage control device to perform the padding process.
摘要:
As a semiconductor storage device that can efficiently perform a refresh operation, provided is a semiconductor storage device comprising a non-volatile semiconductor memory storing data in blocks, the block being a unit of data erasing, and a controlling unit monitoring an error count of data stored in a monitored block selected from the blocks and refreshing data in the monitored block in which the error count is equal to or larger than a threshold value.
摘要:
A semiconductor storage includes a receiver configured to receive a write request from a host device; a storage unit configured to hold redundancy data generation/non-generation information; a writing unit configured to write data in a semiconductor memory array and write redundancy data generation/non-generation information of the written data in the storage unit; a first data extracting unit configured to extract data whose redundancy data is not generated from among the data held by the semiconductor memory array; a first redundancy data generating unit configured to generate redundancy data; a first redundancy data writing unit configured to write the generated redundancy data in the semiconductor memory array; and a first redundancy data generation/non-generation information updating unit configured to update the redundancy data generation/non-generation information of the data whose redundancy data held by the storage unit is generated.
摘要:
A semiconductor storage device includes a first memory area configured in a volatile semiconductor memory, second, third and fourth memory areas configured in a nonvolatile semiconductor memory, and a controller which executes following processing. The controller executes a first processing for storing a plurality of data by the first unit in the first memory area, a second processing for storing data by a first management unit in the fourth memory area, a third processing for storing data by a second management unit in the third memory area, a fourth processing for moving an area of the third unit from the fourth memory area to the second memory area, a fifth processing for copying data to an area of the third unit and allocating the area to the second memory area, and a sixth processing for copying data to an empty area of the third unit in the second memory area.
摘要:
A semiconductor storage device includes a first memory area configured in a volatile semiconductor memory, second and third memory areas configured in a nonvolatile semiconductor memory, and a controller which executes following processing. The controller executes a first processing for storing a plurality of data by the first unit in the first memory area, a second processing for storing data outputted from the first memory area by a first management unit in the second memory area, and a third processing for storing data outputted from the first memory area by a second management unit in the third memory area.