摘要:
An engine lag down suppressing device of construction machinery, comprising a vehicle body controller (13) having a first torque control means and a second torque control means, and a third torque control means. The first torque control means controls a torque control valve (7) to the minimum pump torque (value: Min) according to a target engine rotational speed (Nr) when the operating device (5) in the non-operated state of an continues for a monitoring time (TX1) to suppress an engine lag down after a specified holing time to hold a torque to a low pump torque is passed when the operating device in the non-operated state is operated. The second torque control means controls the torque control valve (7) to hold the minimum pump torque for a specified holding time (Tx2) after the operating device (5) in the non-operated state is operated. The third torque control means comprises a solenoid valve (16) and controls the torque control valve (7) to gradually increase the pump torque with elapse of time from a time when the specified holding time (TX2) is passed based on a specified torque increasing rate (K).
摘要:
An engine control system includes pressure sensors (73, 74), position sensors (75, 76), pressure sensors (77, 78), a target revolution speed modification value computing unit (90), and a modification value adder (70r). A target revolution speed NR2 for use in control is computed based on changes of status variables such that the target revolution speed NR2 increases from the target revolution speed NR1 applied from an input unit (71), and then moderately returns to the target revolution speed NR1. In accordance with the computed target revolution speed NR2 for use in control, a target fuel injection amount FN1 is computed and a fuel injection amount is controlled. As a result, a drop of an engine revolution speed attributable to an abrupt increase of an engine load can be suppressed without sacrificing the work efficiency, and lowering of durability caused by an excessive increase of the engine revolution speed can be prevented.
摘要:
An engine lag down control system for construction machinery has a machinery body controller having first, second and third torque control units and a solenoid valve. The first torque control unit controls a torque control valve to a minimum pump torque corresponding to a target number of engine revolutions when a non-operated state of a control device has continued beyond a monitoring time. The second torque control unit controls the torque control valve such that the above-described minimum pump torque is held for a predetermined holding time subsequent to the operation of the control device from the non-operated state. The third torque control unit controls the torque control valve such that from a time point of a lapse of the predetermined holding time, the pump torque is gradually increased on a basis of a predetermined torque increment rate.
摘要:
A current load rate of an engine 10 is computed and a maximum absorption torque of at least one hydraulic pump 1, 2 is controlled so that the load rate is held at a target value. Engine stalling can be prevented by decreasing the maximum absorption torque of the hydraulic pump under a high-load condition. When an engine output lowers due to environmental changes, the use of poor fuel or other reasons, the maximum absorption torque of the hydraulic pump can be decreased without a lowering of the engine revolution speed. Further, the present invention is adaptable for any kinds of factors causing a lowering of the engine output, such as those factors that cannot be predicted in advance or are difficult to detect by sensors. In addition, because of no necessity of sensors, such as environment sensors, the manufacturing cost can be reduced.
摘要:
An engine control system includes pressure sensors (73, 74), position sensors (75, 76), pressure sensors (77, 78), a target revolution speed modification value computing unit (90), and a modification value adder (70r). A target revolution speed NR2 for use in control is computed based on changes of status variables such that the target revolution speed NR2 increases from the target revolution speed NR1 applied from an input unit (71), and then moderately returns to the target revolution speed NR1. In accordance with the computed target revolution speed NR2, a target fuel injection amount FN1 is computed and a fuel injection amount is controlled. As a result, a drop of an engine revolution speed attributable to an abrupt increase of an engine load can be suppressed without sacrificing the work efficiency, and lowering of durability caused by an excessive increase of the engine revolution speed can be prevented.
摘要:
A reference pump-delivery-rate calculating portion calculates a reference delivery rate of a hydraulic pump by referring to a table stored in a memory based on a control pilot pressure for the hydraulic pump. A target pump-delivery-rate calculating portion divides the reference delivery rate by a ratio of a maximum revolution speed to a target engine revolution speed, thereby calculating a target delivery rate. A target pump tilting calculating portion divides the target delivery rate by an actual engine revolution speed and a constant, thereby calculating a target tilting. A solenoid output current calculating portion calculates a drive current to provide the target tilting and outputs the drive current to a solenoid control valve. The pump delivery rate is thereby controlled with good response following input change of an operation instructing device.
摘要:
Disclosed is a working machine capable of preventing damage to a filter due to excessive accumulation of particulate matter (PM), even under a situation that requires, prior to compulsory regeneration of the filter, moving the machine to a place in which to perform the regeneration work. The working machine that includes an exhaust treatment device 4 having a filter 6 to trap the PM, a regeneration control section 31 for compulsorily regenerating the filter, and a regeneration instruction device 23 for instructing the regeneration control section 31 to start the compulsory regeneration. Further, when a deposition quantity estimating element determines that an actual PM deposition quantity has reached a deposition alarm level, an alarm device 12 notifies an operator that the time has come to start the movement of the working machine to the place of regeneration.
摘要:
In the arm-crowding or track operation, a calculating portion (700d2 or 700d4) calculates a modification gain (KAC or KTR) depending on an operation pilot pressure and a calculating portion (700g) calculates a decrease modification (DND) based on the KAC or KTR, while a calculating portion (700m or 700p) calculates a modification gain (KACH or KTRH) depending on an operation pilot pressure and calculating portions (700q-700s) calculate an increase modification (DNH) based on the KACH or KTRH. A reference target engine revolution speed NR0 is modified using the DND and DNH. In other operations than the arm-crowding and track operations, NR0 is modified using only the decrease modification (DND) calculated from the modification gain just depending on the operation pilot pressure. In the operation where an engine revolution speed is desired to become higher as an actuator load increases, the engine revolution speed can be controlled in accordance with change of the actuator load as well. In other operations, the engine revolution speed can be controlled just depending on the direction and input amount in and by which corresponding operation instructing apparatus is operated.
摘要:
A machine body controller 70A includes a modification control unit 70Ab for computing a torque modification value based on detected signals from environment sensors 75 to 83, and modifies a maximum absorption torque of a hydraulic pump controlled by a basic control unit 70Aa. An engine controller 70B includes a modification control unit 70Bb for computing an injection modification value based on detected the signals from the environment sensors 75 to 83, and modifies a fuel injection state of a fuel injection device 14 controlled by a basic control unit 70Ba. The controllers 70A, 70B further include computation element altering units 171, 181. A communication controller 70C downloads alteration data obtained from an external terminal 150 to the computation element altering units 171, 181, whereby corresponding computation elements contained in the modification control units 70Ab, 70Bb are altered.
摘要:
A machine body controller 70A includes a modification control unit 70Ab for computing a torque modification value based on detected signals from environment sensors 75 to 83, and modifies a maximum absorption torque of a hydraulic pump controlled by a basic control unit 70Aa. An engine controller 70B includes a modification control unit 70Bb for computing an injection modification value based on detected the signals from the environment sensors 75 to 83, and modifies a fuel injection state of a fuel injection device 14 controlled by a basic control unit 70Ba. The controllers 70A, 70B further include computation element altering units 171, 181. A communication controller 70C downloads alteration data obtained from an external terminal 150 to the computation element altering units 171, 181, whereby corresponding computation elements contained in the modification control units 70Ab, 70Bb are altered. As a result, it is possible in any environments to approprately modify the maximum absorption torque of the hydraulic pump and the fuel injection state of the injection device, and to sufficiently develop the performance of a construction machine.