摘要:
In a semiconductor carrier lifetime measuring apparatus A1 of the present invention, at least two types of light having mutually different wavelengths are irradiated onto a semiconductor X to be measured, a predetermined measurement wave is irradiated onto the semiconductor X to be measured, a reflected wave of the measurement wave that has been reflected by the semiconductor X to be measured or a transmitted wave of the measurement wave that has transmitted through the semiconductor X to be measured is detected, and the carrier lifetime in the semiconductor X to be measured is obtained based on the detection results so as to minimize the error. Accordingly, the semiconductor carrier lifetime measuring apparatus A1 configured as described above can more accurately measure the carrier lifetime.
摘要:
In a semiconductor carrier lifetime measuring apparatus A1 of the present invention, at least two types of light having mutually different wavelengths are irradiated onto a semiconductor X to be measured, a predetermined measurement wave is irradiated onto the semiconductor X to be measured, a reflected wave of the measurement wave that has been reflected by the semiconductor X to be measured or a transmitted wave of the measurement wave that has transmitted through the semiconductor X to be measured is detected, and the carrier lifetime in the semiconductor X to be measured is obtained based on the detection results so as to minimize the error. Accordingly, the semiconductor carrier lifetime measuring apparatus A1 configured as described above can more accurately measure the carrier lifetime.
摘要:
In addition to microwave and excitation light, bias light as well is irradiated upon a surface of a semiconductor sample that is passivated using a solution which contains an electrolyte. Irradiation of the bias light increases the quantity of ionic substances that exist in the solution, largely changes a surface potential of the semiconductor sample, and suppresses surface recombination. This makes it possible to measure the lifetime of carriers which exist within the semiconductor sample at a high accuracy, without influenced by surface recombination.
摘要:
A sample evaluation method based on the measurement of photothermal displacement in which two exciting light beams and two measuring light beams are produced by a laser source, the exciting beams are rendered intensity modulation in opposite phase relationship by an acoustic-optic modulator and illuminated to different positions of a sample, the measuring beams are provided with different oscillation frequencies by acoustic-optic modulators and illuminated to the irradiation positions of the exciting beams correspondingly, the reflected lights of measuring beams from the sample are merged so as to interfere with each other, and the sample is evaluated based on the phase of the interference light. The method is capable of measuring the photothermal displacement accurately and stably without implementing intricate signal processings.
摘要:
When evaluating defects, etc. of a sample by measuring thermal expansion displacement on the surface of the sample, which is produced by irradiating thereto an excitation beam of which intensity is cyclically modulated, a measuring beam having the displacement frequency F.sub.1 is irradiated to the vibrating surface of the sample, and the reflection beam is interfered with a reference beam having the frequency F.sub.2. The beat wave signal E.sub.1 (Beat frequency F.sub.b =F.sub.1 -F.sub.2) is converted to a binary signal E.sub.2. Then, the sample is evaluated by signals which are obtained by giving a suitable processing to the binary signals. In addition, the optic axes alignment is eliminated by utilizing the excitation beam itself concurrently as measuring beam.
摘要:
A surface image of a semiconductor wafer having a defect is picked up as a inspection image while a surface image of a semiconductor wafer having no defect is stored in an image memory as a reference image. A density difference image between the inspection image and the reference image. By extracting the defect in wiring and non-wiring regions from the density difference image, extract images are obtained. Two luminance information for wiring and non-wiring regions are obtained from extract images. Based on the luminance information, the type of the defect is determined and a production process where the defect has occurred is detect.
摘要:
The invention seeks to permit evaluation of edge portion of like inclined surfaces of wafer with high accuracy without the conventional destruction process based on the selective etching process but with the contact-free, non-destructive and high accuracy optical acoustical process. To this end, the invention features determination of residual damages as crystal damages caused to wafer edge in an optical acoustical process, which comprises the steps of causing a measurement probe to face each of three exciting laser beam irradiation points on upper and lower inclined surfaces and at an accurate end of an edge portion of a semiconductor wafer, and determining a thermal response induced by the exciting laser beam by a laser interference process.