摘要:
A semiconductor device having a bottom electrode, a ferroelectric film, and a top electrode formed on a semiconductor substrate, wherein the angle of each of the main cross sectional sides of the ferroelectric film relative to the main surface of the semiconductor substrate is less than 75 degrees. Forming the ferroelectric film into the trapezoid in cross section having such an angle provides a microscopic capacitor without electrical short-circuit between the top and bottom electrodes if the top electrode, the ferroelectric film, and the bottom electrode are etched with single photolithography process step. The novel technique implements a microscopic memory cell structure suitable for highly integrated memory devices.
摘要:
A semiconductor device having a bottom electrode, a ferroelectric film, and a top electrode formed on a semiconductor substrate, wherein the angle of each of the main cross sectional sides of the ferroelectric film relative to the main surface of the semiconductor substrate is less than 75 degrees. Forming the ferroelectric film into the trapezoid in cross section having such an angle provides a microscopic capacitor without electrical short-circuit between the top and bottom electrodes if the top electrode, the ferroelectric film, and the bottom electrode are etched with single photolithography process step. The novel technique implements a microscopic memory cell structure suitable for highly integrated memory devices.
摘要:
A semiconductor device having a bottom electrode, a ferroelectric film, and a top electrode formed on a semiconductor substrate, wherein the angle of each of the main cross sectional sides of the ferroelectric film relative to the main surface of the semiconductor substrate is less than 75 degrees. Forming the ferroelectric film into the trapezoid in cross section having such an angle provides a microscopic capacitor without electrical short-circuit between the top and bottom electrodes if the top electrode, the ferroelectric film, and the bottom electrode are etched with single photolithography process step. The novel technique implements a microscopic memory cell structure suitable for highly integrated memory devices.
摘要:
Vertical MISFETs are formed over drive MISFETs and transfer MISFETs. The vertical MISFETs comprise rectangular pillar laminated bodies each formed by laminating a lower semiconductor layer (drain), an intermediate semiconductor layer, and an upper semiconductor layer (source), and gate electrodes formed on corresponding side walls of the laminated bodies with gate insulating films interposed therebetween. In each vertical MISFET, the lower semiconductor layer constitutes a drain, the intermediate semiconductor layer constitutes a substrate (channel region), and the upper semiconductor layer constitutes a source. The lower semiconductor layer, the intermediate semiconductor layer and the upper semiconductor layer are each comprised of a silicon film. The lower semiconductor layer and the upper semiconductor layer are doped with a p type and constituted of a p type silicon film.
摘要:
A memory cell of an SRAM has two drive MISFETs and two vertical MISFETs. The p channel vertical MISFETs are formed above the n channel drive MISFETs. The vertical MISFETs respectively mainly comprise laminate formed of a lower semiconductor layer, intermediate semiconductor layer and upper semiconductor layer laminated in this sequence, a gate insulating film of silicon oxide formed on the surface of the side wall of the laminate, and a gate electrode formed so as to cover the side wall of the laminate. The vertical MISFETs are perfect depletion type MISFETs.
摘要:
Vertical MISFETs are formed over drive MISFETs and transfer MISFETs. The vertical MISFETs comprise rectangular pillar laminated bodies each formed by laminating a lower semiconductor layer (drain), an intermediate semiconductor layer, and an upper semiconductor layer (source), and gate electrodes formed on corresponding side walls of the laminated bodies with gate insulating films interposed therebetween. In each vertical MISFET, the lower semiconductor layer constitutes a drain, the intermediate semiconductor layer constitutes a substrate (channel region), and the upper semiconductor layer constitutes a source. The lower semiconductor layer, the intermediate semiconductor layer and the upper semiconductor layer are each comprised of a silicon film. The lower semiconductor layer and the upper semiconductor layer are doped with a p type and constituted of a p type silicon film.
摘要:
Vertical MISFETs are formed over drive MISFETs and transfer MISFETs. The vertical MISFETs comprise rectangular pillar laminated bodies each formed by laminating a lower semiconductor layer (drain), an intermediate semiconductor layer, and an upper semiconductor layer (source), and gate electrodes formed on corresponding side walls of the laminated bodies with gate insulating films interposed therebetween. In each vertical MISFET, the lower semiconductor layer constitutes a drain, the intermediate semiconductor layer constitutes a substrate (channel region), and the upper semiconductor layer constitutes a source. The lower semiconductor layer, the intermediate semiconductor layer and the upper semiconductor layer are each comprised of a silicon film. The lower semiconductor layer and the upper semiconductor layer are doped with a p type and constituted of a p type silicon film.
摘要:
A memory cell of an SRAM has two drive MISFETs and two vertical MISFETs. The p channel vertical MISFETs are formed above the n channel drive MISFETs. The vertical MISFETs respectively mainly comprise laminate formed of a lower semiconductor layer, intermediate semiconductor layer and upper semiconductor layer laminated in this sequence, a gate insulating film of silicon oxide formed on the surface of the side wall of the laminate, and a gate electrode formed so as to cover the side wall of the laminate. The vertical MISFETs are perfect depletion type MISFETs.
摘要:
Interconnections are formed over an interlayer insulating film which covers MISFETQ1 formed on the principal surface of a semiconductor substrate, while dummy interconnections are disposed in a region spaced from such interconnections. Dummy interconnections are disposed also in a scribing area. Dummy interconnections are not formed at the peripheries of a bonding pad and a marker. In addition, a gate electrode of a MISFET and a dummy gate interconnection formed of the same layer are disposed. Furthermore, dummy regions are disposed in a shallow trench element-isolation region. After such dummy members are disposed, an insulating film is planarized by the CMP method.
摘要:
A semiconductor memory device includes a vertical MISFET having a source region, a channel forming region, a drain region, and a gate electrode formed on a sidewall of the channel forming region via a gate insulating film. In manufacturing the semiconductor memory device, the vertical MISFET in which leakage current (off current) is less can be realized by: counter-doping boron of a conductivity type opposite to that of phosphorus diffused into a poly-crystalline silicon film (10) constituting the channel forming region from an n type poly-crystalline silicon film (7) constituting the source region of the vertical MISFET, and the above-mentioned poly-crystalline silicon film (10); and reducing an effective impurity concentration in the poly-crystalline silicon film (10).