摘要:
A resistance-change memory includes an interlayer insulating film, a lower electrode layer, a fixed layer, a first insulating film, a recording layer, a second insulating film, a conducting layer and an interconnect. The interlayer insulating film is formed on a semiconductor substrate and has a step. The lower electrode layer is formed on the interlayer insulating film including the step. The fixed layer is formed on the lower electrode layer and has invariable magnetization. The first insulating film is formed on the fixed layer. The recording layer is formed on part of the first insulating film and has variable magnetization. The second insulating film is over the recording layer and in contact with the first insulating film. The conducting layer is formed on the second insulating film. The interconnect is connected to the conducting layer.
摘要:
A magnetic material of a magnetoresistive element is formed on a lower electrode. An upper electrode is formed on the magnetic material. A resist for nano-imprint lithography is formed on the upper electrode. A first pattern or a second pattern is formed in the resist by setting a first template or a second template into contact with the resist and curing the resist. The first template has the first pattern that corresponds to the magnetoresistive element and the lower electrode. The second template has the second pattern that corresponds to the magnetoresistive element and the upper electrode. The magnetic material and the lower electrode are patterned at the same time by using the resist having the first pattern, or the magnetic material and the upper electrode are patterned at the same time by using the resist having the second pattern.
摘要:
A semiconductor memory device includes a semiconductor substrate, and plural switching transistors provided on the semiconductor substrate. A contact plug is embedded between the adjacent two switching transistors described above, is insulated from gates of the adjacent two switching transistors, and is electrically connected to diffusion layers of the adjacent two switching transistors. An upper connector is formed on the contact plug, and an upper surface is at a position higher than upper surfaces of the switching transistors. A memory element is provided on the upper surface of the upper connector, and stores data. A wiring is provided on the memory element.
摘要:
According to one embodiment, a semiconductor memory device is disclosed. The device includes MOSFET1 and MOSFET2 arranged in a first direction, variable resistive element (hereafter R1) above MOSFET1 and MOSFET2, a lower end of the R1 being connected to drains of MOSFET1 and MOSFET2, MOSFET3 and MOSFET4 arranged in the first direction, variable resistive element (hereafter R2) above MOSFET3 and MOSFET4, and a lower end of the R2 being connected to drains of MOSFET3 and MOSFET4. The device further includes first wiring line extending in the first direction and connected to sources of MOSFET1 and MOSFET2, second wiring line extending in the first direction and connected to sources of MOSFET3 and MOSFET4, upper electrode connecting upper end of the R1 and upper end of the R2, and third wiring line extending in the first direction and connected to the upper electrode.
摘要:
According to one embodiment, a magnetoresistive memory includes first and second contact plugs in a first interlayer insulating film, a lower electrode on the first interlayer insulating film, a magnetoresistive effect element on the lower electrode, and an upper electrode on the magnetoresistive effect element. The lower electrode has a tapered cross-sectional shape in which a dimension of a bottom surface of the lower electrode is longer than a dimension of an upper surface of the lower electrode, one end of the lower electrode is in contact with an upper surface of the first contact plug. The magnetoresistive effect element is provided at a position shifted from a position immediately above the first contact plug in a direction parallel to a surface of the semiconductor substrate.
摘要:
A semiconductor device includes a first semiconductor layer and a second semiconductor layer that have a form of fins and are arranged a predetermined distance apart from each other, in which a center portion of each serves as a channel region, and side portions sandwiching the center portion serve as source/drain regions, a gate electrode formed on two side surfaces of each of the channel regions of the first semiconductor layer and the second semiconductor layer, with a gate insulating film interposed therebetween, an insulating film formed to fill a gap between the source/drain regions of the first semiconductor layer and the source/drain regions of the second semiconductor layer, and silicide layers formed on side surfaces of the source/drain regions of the first semiconductor layer and the source/drain regions of the second semiconductor layer that are not covered by the insulating film.
摘要:
First and second transistors are formed on a substrate. An interlayer insulating film is formed on the first transistor. A first contact is formed in the interlayer film on a source or a drain of the first transistor. A second contact is formed in the interlayer film on the other of the source or the drain. A first interconnect is formed on the first contact. A magnetoresistive element is formed on the second contact. The magnetoresistive element is arranged in a layer having a height equal to that of the first interconnect from a substrate surface. A third contact is formed in the interlayer film on a source or a drain of the second transistor. A second interconnect is formed on the third contact. The second interconnect is arranged in a layer having a height equal to those of the first interconnect and the magnetoresistive element from the substrate surface.
摘要:
According to one embodiment, a magnetic memory including an isolation region with an insulator in a trench is disclosed. The isolation region defines active areas extending in a 1st direction and having 1st and 2nd active areas, an isolation region extending in a 2nd direction perpendicular to the 1st direction exists between the 1st and 2nd active areas. 1st and 2nd word lines extending in the 2nd direction are buried in a surface of semiconductor substrate. 1st and 2nd select transistors connected to the word lines are on the 1st active area. 1st and 2nd variable resistance elements connected to drain regions of the 1st and 2nd select transistors are on the 1st active area.
摘要:
According to one embodiment, a semiconductor memory device comprises a cell transistor includes a first gate electrode buried in a semiconductor substrate and a first diffusion layer and a second diffusion layer formed to sandwich the first gate electrode, a first lower electrode formed on the first diffusion layer, a magnetoresistive element formed on the first lower electrode to store data according to a change in a magnetization state and connected to a bit line located above, a second lower electrode formed on the second diffusion layer, and a first contact formed on the second lower electrode and connected to a source line located above. A contact area between the second lower electrode and the second diffusion layer is larger than a contact area between the first contact and the second lower electrode.
摘要:
A semiconductor memory device includes a bit line which is provided above a semiconductor substrate and runs in a first direction, a source line which is provided above the semiconductor substrate and runs in the first direction, an active area which is provided in the semiconductor substrate and extends in the first direction, first and second selection transistors which are formed on the active area and share a source region electrically connected to the source line, a first memory element having one end electrically connected to a drain region of the first selection transistor and the other end electrically connected to the bit line, and a second memory element having one end electrically connected to a drain region of the second selection transistor and the other end electrically connected to the bit line.