摘要:
The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.
摘要:
The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.
摘要:
The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.
摘要:
The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.
摘要:
A semiconductor substrate has at least one PN junction with dopant atoms at the junction. A non-dopant at the junction provides interstitial traps to prevent diffusion during annealing. In a process for making this, a non-dopant diffusion barrier, e.g., C, N, Si, F, etc., is implanted into the “halo” region of a semiconductor device, e.g. diode, bipolar transistor, or CMOSFET. This combined with a lower annealing budget (“Spike Annealing”) allows a steeper halo dopant profile to be generated. The invention is especially useful in CMOSFETs with gate lengths less than about 50 nm.
摘要:
In one embodiment of the invention, source and drain regions are formed as well as source and drain contact regions. Thereafter source and drain extension regions are formed. In another embodiment, elevated source and drain regions are formed as well as source and drain extension regions. Thereafter source and drain contact regions are formed at a temperature up to about 600° C. and an annealing time of up to about one minute.
摘要:
A p-type MOSFET having very shallow p-junction extensions. The semiconductor device is produced on a substrate by creating a layer of implanted nitrogen ions extending from the substrate surface to a predetermined depth preferably less than about 800 Å. The gate electrode serves as a mask so that the nitrogen implantation does not filly extend under the gate electrode. Boron is also implanted to an extent and depth comparable to the nitrogen implantation thereby forming very shallow p-junction extensions that remain confined substantially within the nitrogen layer even after thermal treatment. There is thus produced a pMOSFET having very shallow p-junction extensions in a containment layer of nitrogen and boron in the semiconductor material.
摘要:
A method for forming a raised silicide contact, the method including depositing a layer of silicon using a gas cluster implant technique which accelerates clusters of silicon atoms causing them to penetrate a surface oxide on a top surface of the silicide; heating the silicide including the silicon layer to a temperature from about 300° C. to about 950° and holding the temperature for about 0.1 miliseconds to about 600 seconds in an inert atmosphere causing silicon from the layer of silicon to react with the remaining silicide partially formed in the silicon containing substrate; and forming a raised silicide from the layer of silicon, wherein the thickness of the raised silicide is greater than the thickness of the silicide and the raised silicide protrudes above a top surface of the silicon containing substrate.
摘要:
A method of forming a semiconductor device is provided that includes forming a gate structure atop a substrate and implanting dopants into the substrate to a depth of 10 nm or less from an upper surface of the substrate. In a following step, an anneal is performed with a peak temperature ranging from 1200° C. to 1400° C., and a hold time period ranging from 1 millisecond to 5 milliseconds.
摘要:
A strained Fin Field Effect Transistor (FinFET) (and method for forming the same) includes a relaxed first material having a sidewall, and a strained second material formed on the sidewall of the first material. The relaxed first material and the strained second material form a fin of the FinFET.