摘要:
The present invention is a heat processing apparatus comprising: a processing vessel that receives a plurality of objects to be processed in a tier-like manner to subject the objects to be processed to a predetermined heating process; a tubular heater disposed to surround the processing vessel, the tubular heater being capable of heating the objects to be processed; an exhaust heat system for discharging an atmosphere in a space between the heater and the processing vessel; and a cooling unit that blows-out a cooling fluid into the space to cool the processing vessel. The heater has a tubular heat insulating member, and a heating resistor arranged on an inner circumference of the heat insulating member. The cooling unit has a plurality of blowing nozzles embedded in the heat insulating member. Each of the blowing nozzles is formed in such a manner that an inlet orifice of the blowing nozzle and an outlet orifice thereof are not linearly aligned to each other.
摘要:
The present invention is a heat processing apparatus comprising: a processing vessel that receives a plurality of objects to be processed in a tier-like manner to subject the objects to be processed to a predetermined heating process; a tubular heater disposed to surround the processing vessel, the tubular heater being capable of heating the objects to be processed; an exhaust heat system for discharging an atmosphere in a space between the heater and the processing vessel; and a cooling unit that blows out a cooling fluid into the space to cool the processing vessel. The heater has a tubular heat insulating member, and a heating resistor arranged on an inner circumference of the heat insulating member. The cooling unit has a plurality of blowing nozzles embedded in the heat insulating member. Each of the blowing nozzles is formed in such a manner that an inlet orifice of the blowing nozzle and an outlet orifice thereof are not linearly aligned to each other.
摘要:
A heat treatment device includes: a processing container that accommodates a plurality of substrates to be subjected to heat treatment; a substrate holding member that holds the plurality of substrates; an induction heating coil that forms an induction magnetic field inside the processing container; a high frequency power supply that applies a high frequency electric power to the induction heating coil; a gas supply mechanism that supplies a processing gas to the inside of the processing container; an exhaust mechanism that exhausts the inside of the processing container; and an induction heating element provided between the induction heating coil and the substrate holding member to enclose the substrate holding member inside the treatment container. The induction heating element is heated by an induction electric current formed by the induction magnetic field, and the substrates are heated by radiation heat from the induction heating element. The flow of the inductive electric current to the substrate is blocked by the induction heating element.
摘要:
A gas supply system according to the present invention comprises a gas filter disposed in a gas supply flow passage through which a gas is supplied to a semiconductor manufacturing apparatus and a metal component remover disposed in the gas supply flow passage downstream relative to the gas filter, which removes a volatile metal component contained in the gas flowing through the gas supply flow passage by liquefying the volatile metal component. The structure adopted in the gas supply system prevents entry of the volatile metal component, which cannot be eliminated through the gas filter, into the semiconductor manufacturing apparatus as the corrosive gas is supplied thereto by the gas supply flow passage.
摘要:
A thin film forming apparatus 1 comprises a reaction chamber 2, and an exhaust pipe 5 connected with the reaction chamber 2. A fluorine introducing pipe 17c and a hydrogen introducing pipe 17d are connected with the reaction chamber 2, in order to supply a cleaning gas containing fluorine gas and hydrogen gas into the reaction chamber 2 or into the exhaust pipe 5. The hydrogen introducing pipe 17d includes an inner fluid passage 174 and an outer fluid passage 175 formed to cover around the inner fluid passage 174. The hydrogen gas is supplied through the inner fluid passage 174, while nitrogen gas is supplied through the outer fluid passage 175. Thus, the hydrogen gas to be fed through the inner fluid passage can be supplied from the hydrogen introducing pipe 17d, while being covered with the nitrogen gas.
摘要:
The present invention is a thermal processing unit including: a heating-furnace body whose upper end has an opening; a reaction tube consisting of a single tube contained in the heating-furnace body; a gas-discharging-unit connecting portion formed at an upper portion of the reaction tube, the gas-discharging-unit connecting portion having a narrow diameter; a substrate-to-be-processed supporting member for supporting a substrate to be processed, contained in the heating-furnace body; and a heating unit for heating the substrate to be processed supported by the substrate-to-be-processed supporting member. The heating unit has: a first heating portion arranged around the reaction tube, a second heating portion arranged around the gas-discharging-unit connecting portion, a third heating portion arranged around an upper portion of the reaction tube, a fourth heating portion arranged around a lower portion of the reaction tube, and a fifth heating portion arranged under the substrate-to-be-processed supporting member.
摘要:
Two rotors 18a, 18b each housing a honeycomb structure 25 carrying an absorbent is driven for rotation by a common motor 19. Partitioning members 17 define an absorbing zone S and a recovery zone U in the rotor depending on the angular positional relationship between the partitioning members 17 and the rotor corresponding thereto. In the absorbing zone S, the absorbent removes moisture and organic matters from air passing therethrough. In the recovery zone U, recovery of the absorbent deteriorated by absorbing the moisture and the organic matters is preformed by using heated dry air. Air sucked from a transfer space 10 of the processing system sequentially passes through the absorbing zones of both the rotors via a circulation passage 20, thereafter returned to the transfer space. A part of clean dry air having passed through the absorbing zones of both the rotors is supplied into an exhaust passage 21, and is heated by a heater, and passes through the recovery zones of both the rotors.
摘要:
A carbon wire heating element sealing heater is provided. Therein, a carbon wire heating element using carbon fibers is sealed in a quartz glass member, wherein absorption water quantity of the carbon wire heating element is 2×10−3 g/cm3 or less.
摘要翻译:提供碳丝加热元件密封加热器。 其中,使用碳纤维的碳丝加热元件密封在石英玻璃构件中,其中碳线加热元件的吸收水量为2×10 -3 / cm 3 或更少。
摘要:
A heater sealed with carbon wire heating element has a carbon wire heating element sealed with a quartz glass member, the carbon wire being prepared by knitting carbon single fibers into a knitted cord of a braid, each wire having a crystal structure with a interlayer spacing d (002) thereof being 0.343 or less and crystallite size Lc (002) thereof being 4.0 nm or more.
摘要:
A rod-shaped heater provided is composed of a carbon wire heating element 2 sealed in a small or large diameter quartz glass tube, a small diameter quartz glass tube portions 3a and 3b charged with compressed wire carbon members at opposite ends thereof; a sealed terminal section 10 having connection lines 11a and 11b for power supply held between the compressed wire carbon members charged in the small diameter quartz glass tube. The connection lines and the carbon wire heating element are electrically connected by way of the wire carbon members. This rod-shaped heater using the carbon wire heating element is suitable for readily raising the temperature of the agent in the storage tank of the wet etching agent or the grinding agent.