摘要:
Provided is a CdTe-based semiconductor substrate for epitaxial growth, which is capable of growing good-quality epitaxial crystals without urging a substrate user to implement etching treatment before the epitaxial growth.A CdTe-based semiconductor substrate, in which tracks of linear polishing damage with a depth of 1 nm or more are not observed within a viewing range of 10 μm×10 μm when a surface of the substrate is observed by an atomic force microscope, and orange peel defects are not observed when the surface of the substrate is visually observed under a fluorescent lamp, can grow the good-quality epitaxial crystals.
摘要:
Provided is a semiconductor substrate for epitaxial growth which does not require any etching treatment as a pretreatment in the stage of performing an epitaxial growth of HgCdTe film. A CdTe system compound semiconductor substrate for the epitaxial growth of the HgCdTe film is housed in an inactive gas atmosphere, in a predetermined period of time (for example, 10 hours) after mirror finish treatment thereof, to thereby regulate the proportion of Te oxide of the total amount of Te on the substrate surface which is obtained by XPS measurement so as to be not more than 30%.
摘要:
Provided is a semiconductor substrate for epitaxial growth which does not require any etching treatment as a pretreatment in the stage of performing an epitaxial growth of HgCdTe film. A CdTe system compound semiconductor substrate for the epitaxial growth of the HgCdTe film is housed in an inactive gas atmosphere, in a predetermined period of time (for example, 10 hours) after mirror finish treatment thereof, to thereby regulate the proportion of Te oxide of the total amount of Te on the substrate surface which is obtained by XPS measurement so as to be not more than 30%.
摘要:
It is to provide a substrate for growing a semiconductor, which is effective for suppressing an occurrence of surface defects different in type from hillock defects in case of epitaxially growing a compound semiconductor layer, particularly an Al-based compound semiconductor layer.In a substrate for growing a compound semiconductor, in which a crystal surface inclined at a predetermined off angle with respect to a (100) plane is a principal plane, an angle made by a direction of a vector obtained by projecting a normal vector of the principal plane on the (100) plane and one direction of a [0-11] direction, a [01-1] direction, a [011] direction and a [0-1-1] direction is set to be less than 35°, and the compound semiconductor layer is epitaxially grown on the substrate.
摘要:
It is to provide a substrate for growing a semiconductor, which is effective for suppressing an occurrence of surface defects different in type from hillock defects in case of epitaxially growing a compound semiconductor layer, particularly an Al-based compound semiconductor layer.In a substrate for growing a compound semiconductor, in which a crystal surface inclined at a predetermined off angle with respect to a (100) plane is a principal plane, an angle made by a direction of a vector obtained by projecting a normal vector of the principal plane on the (100) plane and one direction of a [0-11] direction, a [01-1] direction, a [011] direction and a [0-1-1] direction is set to be less than 35°, and the compound semiconductor layer is epitaxially grown on the substrate.
摘要:
The present invention relates to a wafer storage container which contains a semiconductor wafer one by one and provides a technology to effectively reduce adhesion of particles on semiconductor wafer surfaces during the storage of the wafer. A wafer storage container which contains a wafer one by one, includes: a wafer containing member including a domed-shape recess which abuts on a circumferential edge of the wafer and is capable of holding the wafer; and a cover member which is engaged with the wafer containing member and is capable of sealing the wafer containing member; and a wafer rear surface protection member which is formed into a shape substantially same as an opening of the domed-shape recess and comes into contact with an entire rear surface of the wafer placed so that a front surface is directed the domed-shape recess.
摘要:
The present invention relates to a wafer storage container which contains a semiconductor wafer one by one and provides a technology to effectively reduce adhesion of particles on semiconductor wafer surfaces during the storage of the wafer. A wafer storage container which contains a wafer one by one, includes: a wafer containing member including a domed-shape recess which abuts on a circumferential edge of the wafer and is capable of holding the wafer; and a cover member which is engaged with the wafer containing member and is capable of sealing the wafer containing member; and a wafer rear surface protection member which is formed into a shape substantially same as an opening of the domed-shape recess and comes into contact with an entire rear surface of the wafer placed so that a front surface is directed the domed-shape recess.
摘要:
Provided is a CdTe-based semiconductor substrate for epitaxial growth, which is capable of growing good-quality epitaxial crystals without urging a substrate user to implement etching treatment before the epitaxial growth.A CdTe-based semiconductor substrate, in which tracks of linear polishing damage with a depth of 1 nm or more are not observed within a viewing range of 10 μm×10 μm when a surface of the substrate is observed by an atomic force microscope, and orange peel defects are not observed when the surface of the substrate is visually observed under a fluorescent lamp, can grow the good-quality epitaxial crystals.
摘要:
It is to provide a substrate for epitaxial growth, which is capable of improving a surface state of an epitaxial layer at microroughness level. In a substrate for epitaxial growth, when haze is defined as a value calculated by dividing intensity of scattered light obtained when light is incident from a predetermined light source onto a surface of a substrate, by intensity of the incident light from the light source, the haze is not more than 2 ppm all over an effectively used area of the substrate and an off-angle with respect to a plane direction is 0.05 to 0.10°.
摘要:
A method for producing a low-dislocation InP single crystal suitably used for an optical device such as a semiconductor laser, and the low-dislocation InP single crystal wafer are provided. In a liquid-encapsulated Czochralski method in which a semiconductor raw material and an encapsulant are contained in a raw material melt containing part comprising a cylindrical crucible having a bottom, the raw material containing part is heated to melt the raw material, and a seed crystal is brought into contact with a surface of a melt of the raw material in a state of being covered with the encapsulant to grow a crystal while the seed crystal is raised; a crystal shoulder part is grown from the seed crystal by setting a temperature gradient in a crystal growth direction to 25° C./cm or less and setting a temperature-fall amount to 0.25° C./hr or more. Thus, an iron-doped or undoped InP single crystal wafer in which an area having a dislocation density of 500/cm2 or less occupies 70% or more is realized.
摘要翻译:提供适合用于半导体激光器等光学元件的低位错InP单晶的制造方法和低位错InP单晶晶片。 在包含具有底部的圆柱形坩埚的原料熔融物的部件中含有半导体原料和密封剂的液体封装的切克劳斯法中,加热含有原料的部分,使原料熔融, 在被密封剂覆盖的状态下与原料的熔体的表面接触以在晶种升高的同时生长晶体; 通过将晶体生长方向的温度梯度设定为25℃/ cm以下,将温度下降量设定为0.25℃/小时以上,从晶种生长晶面部。 因此,实现了具有500 / cm 2以下的位错密度的面积占70%以上的铁掺杂或未掺杂的InP单晶晶片。