Abstract:
A sensor for detecting a substance in liquid includes a sensing oscillation circuit and a reference oscillation circuit. The sensing oscillation circuit includes a sensing SAW element in which a reaction film arranged so as to cover at least one IDT and to react with a substance in liquid is disposed and a first amplifier circuit. The reference oscillation circuit includes a reference SAW element and a second amplifier circuit. The reference SAW element includes at least one IDT and no reaction film. The oscillation frequency of the sensing oscillation circuit and the oscillation frequency of the reference oscillation circuit are separated by at least about 200×k2 (ppm), where k2 (%) is the electromechanical coupling coefficient of a piezoelectric substrate used in each of the sensing SAW element and the reference SAW element.
Abstract:
A sensor for detecting a substance in liquid includes a sensing circuit including a sensing surface acoustic wave (SAW) element in which a reaction film to react with a substance in liquid, a reference circuit including a reference SAW element including an IDT and not including a reaction film, a first signal source driving the sensing circuit, a second signal source driving the reference circuit and being independent of the first signal source, and a differential circuit arranged to output a differential output between an output of the sensing circuit and an output of the reference circuit. The frequency of a first frequency signal output from the first signal source is different from the frequency of a second frequency signal output from the second signal source, thereby making a driving frequency for the sensing SAW element and a driving frequency for the reference SAW element substantially the same as or different from one another.
Abstract:
A surface acoustic wave sensor detects a mass load on a resonator-type surface acoustic wave filter on the basis of a change in frequency and includes an IDT electrode arranged on a piezoelectric substrate to excite surface waves, an insulating film arranged so as to cover the IDT electrode, and a reaction film which is disposed on the insulating film and which reacts with a target substance to be detected or a binding substance that binds to a target substance to be detected. The reaction film is composed of a metal or a metal oxide.
Abstract:
A method for detecting a substance in a liquid with high accuracy and high sensitivity includes recording frequency drifts of output frequencies of oscillator circuit outputs of m sensing oscillator circuits respectively including sensing SAW elements and frequency drifts of output frequencies of oscillator circuit outputs of n reference oscillator circuits respectively including reference SAW elements; determining at least one of the sensing oscillator circuits whose frequency drifts fall within a predetermined range and at least one of the reference oscillator circuits whose frequency drifts fall within the predetermined range to be acceptable; selecting at least one of the sensing oscillator circuits from among the acceptable sensing oscillator circuits and at least one of the reference oscillator circuits from among the acceptable reference oscillator circuits; and comparing an oscillator circuit output of the selected at least one of sensing oscillator circuits with an oscillator circuit output of the selected at least one of reference oscillator circuits to thereby detect a detection target substance.
Abstract:
A tunable filter includes a surface acoustic wave resonator, in which an IDT electrode is defined by an electrode material provided in a recess in an upper surface of a piezoelectric substrate made of LiNbO3 or LiTaO3, and a ZnO film is arranged to cover the upper surface of the piezoelectric substrate, and variable capacitors connected with the surface acoustic wave resonator.
Abstract:
An in-liquid-substance detection sensor that achieves size reduction and detection accuracy improvement includes a piezoelectric substrate, at least two SAW devices provided on one major surface of the piezoelectric substrate and each having at least one IDT electrode defining a sensing portion, outer electrodes provided on the other major surface of the piezoelectric substrate and electrically connected to the SAW devices through vias extending through the piezoelectric substrate, a channel-defining member provided on the one major surface of the piezoelectric substrate so as to surround the SAW devices and a region connecting the SAW devices to each other, thereby defining sidewalls of a channel, and a protective member bonded to the one major surface of the piezoelectric substrate with the channel-defining member interposed therebetween, thereby sealing the channel, the protective member having at least two through holes communicating with the channel.
Abstract:
A surface acoustic wave device includes a LiNbO3 substrate having a plurality of grooves formed in the upper surface thereof, an IDT electrode formed by filling the grooves with a metal, and a SiO2 layer arranged to cover an upper surface of the LiNbO3 substrate and the IDT electrode and having a substantially flat surface. The surface acoustic wave device uses a response of a Rayleigh wave. The LiNbO3 substrate has Euler angles in the range of (0°±5°, 180° to 247°, 0°±5°).
Abstract:
A surface acoustic wave device includes a LiNbO3 substrate having Euler angles (0°±5°, θ, 0°±10°), electrodes that are disposed on the LiNbO3 substrate, are primarily composed of Cu, and include an IDT electrode, a first silicon oxide film having substantially the same thickness as the electrodes and disposed in an area other than an area on which the electrodes including the IDT electrode are disposed, and a second silicon oxide film disposed on the electrodes and the first silicon oxide film, wherein the Euler angle θ and the normalized thickness H of the second silicon oxide film are selected to satisfy the formula 1 or 2: −50×H2−3.5×H+38.275≦{θ}≦10H+35 (wherein H 0.25) Formula 2.
Abstract:
A surface acoustic wave device includes a piezoelectric substrate, at least one interdigital transducer (IDT) electrode provided on the piezoelectric substrate, and an insulator layer to improve a temperature characteristic arranged so as to cover the IDT electrode. When a surface of the insulator layer is classified into a first surface region under which the IDT electrode is positioned and a second surface region under which no IDT electrode is positioned, the surface of the insulator layer in at least one portion of the second surface region is higher than the surface of the insulator layer from the piezoelectric substrate in at least one portion of the first surface region by at least about 0.001λ, where the wavelength of an acoustic wave is λ.
Abstract:
In a method for producing a boundary acoustic wave device that includes a first medium, a second medium, and a third medium laminated in that order, and electrodes disposed at the interface between the first medium and the second medium, the method includes the steps of preparing a laminate including the first medium, the second medium, and the electrodes disposed at the interface between the first medium and the second medium, adjusting the thickness of the second medium after the step of preparing the laminate to regulate a frequency or the acoustic velocity of a surface acoustic wave, a pseudo-boundary acoustic wave, or a boundary acoustic wave, after the adjusting step, forming the third medium different from the second medium in terms of the acoustic velocity with which the boundary acoustic wave propagates therethrough and/or in terms of material.