摘要:
An apparatus is provided for reducing color bleed in a flat panel display. The apparatus comprises an anode (30) with a plurality of phosphors (28) of at least two colors sequentially disposed thereon. A cathode (14) is arranged in parallel opposed position to and separated from the anode (30) and contains a plurality of pads (40) of emitters. Each pad (40) is disposed on the cathode (14) in spaced relationship to and aligned with one of the at least two colors, respectively, wherein electrons from each of the plurality of pads of emitters that drift from its intended phosphor (28) are encouraged to drift toward an adjacent phosphor (28) of the same color.
摘要:
A field emission device (10) is provided that prevents electrical breakdown. The field emission device (10) comprises an anode (40) distally disposed from a cathode plate that includes an insulating substrate (12) having a portion exposed to the anode (40), and a cathode metal (14) overlying another portion of the insulating substrate (12). A gate electrode (26) overlies an oxide (24) above at least a portion of the cathode metal (14) and optionally above a portion of the substrate. A dielectric layer (18) is positioned between a resistive layer (22) and the cathode metal (14), and substantially all of the exposed substrate, and underlies substantially all of the gate electrode (26) including its edges (34, 46), providing a resistance between the cathode metal (14) and the edges (34, 46).
摘要:
A fabrication process is provided for reducing leakage current in a field emission display having at least one electron emitter (24) electrically coupled to a ballast resistor (16) coupled to a cathode metal (14), wherein at least one defect (28) extends to a gate electrode (20) from a region (22) electrically coupled to the ballast resistor, the method comprising heating (32) to reduce the resistance of the ballast resistor; and applying (34) a voltage between the cathode metal and the gate electrode thereby creating a current through the at least one defect to create an electrical open therein.
摘要:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
摘要:
An electronic device (110, 210) includes a housing (120) encasing a component (112, 114). The housing (120) includes a region (300, 600, 800, 1000) contiguous to the component (112, 114), the region (300, 600, 800, 1000) configured to selectively switch between a metallic appearance to transparent to reveal the component (112, 114) through the region (300, 600, 800, 1000) when transparent. Metal surfaces, metal particles, or shiny particles that are incorporated into device structures may be actuated. The grain sizes of the particles can be adjusted to achieve the desired reflections. In addition, individual shutters (318, 618, 818, 1018) can be fabricated with a distribution of predisposed orientations to enhance the reflectivity.
摘要:
An apparatus is provided for focusing electrons being emitted from a field emission device. The apparatus comprises a substrate (12,41,51) having first and second portions, and a cathode metal layer (20,44,52) formed over the substrate (12,41,51) in the first portion to partially define a sidewall (23) for a trench (25) in the second portion. A ballast layer (22,46,53) is formed over the substrate (12,41,51) in the second portion, the cathode metal layer (20,44,52), and the sidewall (23). A first dielectric layer (24,47,54) is formed over the ballast layer (22,46,53) in the first portion. A gate extraction metal layer (26,48,55) is formed over the first dielectric layer. At least one emitter (30) comprising a high aspect ratio conductive material is formed above the substrate and in the trench (25) having a sidewall (23) defined by the first dielectric layer (24,47,54) and the cathode metal layer (20,44,52). The ballast layer (22,46,53) extends along the sidewall and conductively contacts the cathode metal layer and the at least one emitter. An anode (32) is positioned to receive electrons from the at least one emitter (30). The ballast layer (22,46,53) provides a force that counteracts the sidewise pull of the gate extraction metal layer (26,48,55).
摘要:
A method is provided for preventing electron emission from a sidewall (34) of a gate electrode (20) and the edge (28) of the gate electrode stack of a field emission device (10), the gate electrode (20) having a surface (24) distally disposed from an anode (40) and a side (26) proximate to emission electrodes (38). The method comprises growing dielectric material (22) over the surface (24) and side (26) of the gate electrode (20), and performing an anisotropic etch (32) normal to the surface (24) to remove the dielectric material (22) from the surface (24) and leaving at least a portion of the dielectric material (22) on the side (26) of the gate electrode (20) and edge (28) of the gate electrode stack.
摘要:
A method is provided for bonding spacers (22) to an anode (12) and/or cathode (24) of a flat panel display. The method comprises forming a black matrix layer (26) between a ductile metal layer (28) and a first display plate (12), the black matrix layer (26) and the ductile metal layer (28) defining a plurality of regions (20) surrounding a plurality of pixels (16). A cathodoluminescent material (18) is formed within each of the pixels (16) and an aluminum layer (32) may be formed on the silver layer (28) and the cathodoluminescent layer (18). A first end (52) of each of a plurality of spacers is attached to one each of the regions (20), wherein a thermocompression bonding positions the spacer (22) contiguous to the ductile metal layer (28). The second display plate (24), e.g., cathode, is attached to a second end of each of the plurality of spacers (22).
摘要:
A field emission device (400) includes a plastically-deformable, ceramic, stamped substrate (200) made from a plastically deformable ceramic, which in the preferred embodiment includes a calendered tape. The plastically-deformable, ceramic, stamped substrate (200) includes first and second opposed surfaces (202, 204) and defines apertures (206) in which are formed extraction electrodes (410). The field emission device (400) further includes an electron-emissive layer (418) being formed on the first opposed surface (202). Cathodes (420) are disposed on the electron-emissive layer (418) and cross the extraction electrodes (410) at an angle of 90.degree.. A method for fabricating said field emission device (400) includes stamping a layer (100) of the softened calendered tape with a die (300) to define the apertures (206) and grooves (208, 212, 214).
摘要:
An electronic device (100, 400, 500) includes a display (116, 516) positioned within a housing (104, 504) for presenting two dimensional images. A cover (102, 502) is moveably mounted to the housing (104, 504) and capable of assuming an open position and a closed position. An optical element (120, 420, 520) is disposed within the cover (102, 502), wherein the display (116, 516) may be viewed directly when the cover (102, 502) is in the open position and wherein the display may be viewed through the optical element (120, 420, 520) when the cover (102, 502) is in the closed position, the optical element (120, 420, 520) giving the two dimensional images on the display (116, 516) a three dimensional appearance.