摘要:
A method of precleaning a silicon wafer to remove a layer of native silicon oxide thereon comprising adding a mixture of argon and oxygen to a plasma etch chamber including a wafer to be cleaned mounted on a cathode in said chamber, while maintaining the pressure in the chamber below about 3 millitorr. The oxygen is added to react with silicon atoms in the plasma but not with silicon atoms of the single crystal silicon wafer. The presence of oxygen in the plasma at low pressure ensures steady plasma generation and uniform etching across the wafer.
摘要:
A cassette stocker includes a plurality of cassette storage shelves positioned adjacent a cleanroom wall and vertically disposed relative to a plurality of cassette docking stations, and a cassette mover to carry a cassette between the shelves and the docking stations. An interstation transfer apparatus includes a support beam and a transfer arm adapted to carry a cassette between processing stations.
摘要:
A loader conveyor adapted so as to receive a wafer carrier from a transfer conveyor and adapted to terminate at an intersection with a processing system, is provided. Thus, the need for a front-end loader robot may be eliminated.
摘要:
Improved targets for use in DC_magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
摘要:
Improved targets for use in DC.sub.-- magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
摘要:
A method of fabricating an electrically conductive plug on a semiconductor workpiece. A dielectric layer is deposited on the workpiece, and a cavity is etched in the dielectric. An etchant-resistant material is deposited on the wall of the cavity adjacent the cavity mouth so as to form an inwardly-extending lateral protrusion, the etchant-resistant material being resistant to etching by at least one etchant substance which etches said electrically conductive material substantially faster than it etches the etchant resistant material. The cavity is filled by an electrically conductive material. In another aspect of the method, the etchant-resistant material can be omitted. Instead, upper and lower portions of the cavity are etched anisotropically and isotropically, respectively, so as to form a lower portion of the cavity that is wider than the upper portion. In a third aspect of the method, a higher density upper layer of dielectric is deposited over a lower density lower layer of dielectric. The two layers are etched to form a cavity. Because of the upper layer's higher density, it etches more slowly than the lower layer, producing a cavity having an upper portion that is narrower than its lower portion.
摘要:
A process is described for forming, over a silicon surface, a titanium nitride barrier layer having a surface of (111) crystallographic orientation. The process comprises: depositing a first titanium layer over a silicon surface; sputtering a titanium nitride layer over the titanium layer; depositing a second titanium layer over the sputtered titanium nitride layer; and then annealing the structure in the presence of a nitrogen-bearing gas, and in the absence of an oxygen-bearing gas, to form the desired titanium nitride having a surface of (111) crystallographic orientation and a sufficient thickness to provide protection of the underlying silicon against spiking of the aluminum. When an aluminum layer is subsequently formed over the (111) oriented titanium nitride surface, the aluminum will then assume the same (111) crystallographic orientation, resulting in an aluminum layer having enhanced resistance to electromigration.
摘要:
An improved process is described for forming planar tungsten-filled contacts to a silicon substrate in contact openings through an insulating layer which provides for the formation of titanium silicide in and on the silicon surface at the bottom of the contact openings to provide low resistance silicide interconnections between the silicon substrate and the tungsten. A titanium nitride layer is formed over the titanium silicide and on the surfaces of the insulation layer, including the top surface of the insulation layer and the sidewall surfaces of the contact openings through the insulating layer. This titanium nitride layer provides a nucleation layer which permits a good bond to form from the tungsten through the titanium nitride and titanium silicide in the contact openings to the silicon substrate; and from the tungsten through the titanium nitride layer to the insulator material such as silicon dioxide (SO.sub.2), resulting in the formation of low resistance and low defect density contacts.
摘要:
An improved process is described for forming planar tungsten-filled contacts to a silicon substrate in contact openings through an insulating layer which provides for the formation of titanium silicide in and on the silicon surface at the bottom of the contact openings to provide low resistance silicide interconnections between the silicon substrate and the tungsten. A titanium nitride layer is formed over the titanium silicide and on the surfaces of the insulation layer, including the top surface of the insulation layer and the sidewall surfaces of the contact openings through the insulating layer. This titanium nitride layer provides a nucleation layer which permits a good bond to form from the tungsten through the titanium nitride and titanium silicide in the contact openings to the silicon substrate; and from the tungsten through the titanium nitride layer to the insulator material such as silicon dioxide (SO.sub.2), resulting in the formation of low resistance and low defect density contacts.
摘要:
An improved method and apparatus are disclosed for calibrating the emissivity characteristics of a semiconductor wafer within a processing chamber by supporting a sample wafer on a graphite susceptor within the chamber and by comparing the temperature measured within the susceptor in close proximity to the center of the wafer with the temperature measured by the emission of radiation from the surface of the wafer through the walls of the processing chamber. Temperature measurements subsequently made from the radiation emitted from the surface of similar wafers are corrected with reference to the measurement made of the temperature within the susceptor on the sample wafer.