Abstract:
A base metal repair tape includes a first layer formed braze alloy bonded together with fibrillated polytetrafluoroethylene, a second layer formed from powdered base metal comprising oxygen-sensitive superalloy bonded together by fibrillated polytetrafluoroethylene and a third layer comprising a brazing alloy bonded together by fibrillated polytetrafluoroethylene. This is used to repair base metal by placing the first layer on the base metal and brazing the base metal powder so that the brazing alloy melts and diffuses into the base metal powder bonding it to the surface of the article. This permits the braze powder to be bonded to the base metal surface with minimal distance between the base powder particles. The number of alternating layers of base metal and braze alloy can be increased to increase the thickness of the repair. This can also be used to form small intricate parts.
Abstract:
A base metal repair tape includes a first layer formed braze alloy bonded together with fibrillated polytetrafluoroethylene, a second layer formed from powdered base metal bonded together by fibrillated polytetrafluoroethylene and a third layer comprising a brazing alloy bonded together by fibrillated polytetrafluoroethylene. This is used to repair base metal by placing the first layer on the base metal and brazing the base metal powder so that the brazing alloy melts and diffuses into the base metal powder bonding it to the surface of the article. This permits the braze powder to be bonded to the base metal surface with minimal distance between the base powder particles. The number of alternating layers of base metal and braze alloy can be increased to increase the thickness of the repair. This can also be used to form small intricate parts.
Abstract:
Two metal objects are bonded together by positioning a brazing composite on the surfaces that are to be bonded together and heating the metal objects causing the composite to disintegrate with brazing alloy that is held in the composite melting to bond the two surfaces together. The composite is a combination of the brazing alloy and fibrillater polytetrafluoroethylene. This product which is very malleable can be formed to any desired shape to facilitate bonding a variety of different objects together. It is particularly useful for bonding honeycombed objects to metal surfaces.
Abstract:
A braze paste is disclosed for brazing superalloys together which includes an organic binding system, a major amount of a nickel, cobalt, gold, silver, copper or palladium based braze alloy and ground polytetrafluoroethylene. The braze paste can be used to braze superalloys together without prior nickel treatment. In the brazing step, the polytetrafluoroethylene decomposes and forms fluoride ions which in turn acts on any oxide that may form during the brazing step to remove the oxide and permit a good braze between the metal objects.
Abstract:
Corrosion resistant metal, either platinum or MCrAlY is bonded to a corrosion sensitive metal such as nickel based superalloys by coating the surface with the corrosion resistant metal particles held in a binder and covering this with a metalide generating tape. This is then heated to cause the formation of the metalide coating on the metal surface, which in turn, bonds the corrosion resistant metal to the surface.
Abstract:
Corrosion resistant metal, either platinum or MCrAlY is bonded to a corrosion sensitive metal such as nickel based superalloys by coating the surface with the corrosion resistant metal particles held in a binder and covering this with a metalide generating tape. This is then heated to cause the formation of the metalide coating on the metal surface, which in turn, bonds the corrosion resistant metal to the surface.
Abstract:
A base metal repair tape includes a first layer formed from powdered base metal bonded together by fibrillated polytetrafluoroethylene and a second layer comprising a brazing alloy bonded together by fibrillated polytetrafluoroethylene. This is used to repair base metal by placing the first layer on the base metal and brazing the base metal so that the brazing alloy melts and diffuses into the base metal powder bonding it to the surface of the article. This permits the braze powder to be bonded to the base metal surface with minimal distance between the base powder particles.
Abstract:
A pack cementation coating tape such as a nickel aluminide coating tape includes a reactive metal such as aluminum, a filler such as aluminum oxide, and a halogen carrier such as ammonium chloride held together by fibrillated polytetrafluoroethylene. The tape is useful in coating localized areas of nickel containing alloys to provide a nickel aluminide surface coating. The coating is formed by positioning the tape over the metal surface and heating the tape to a temperature of about 1250.degree. F. wherein the element metal such as aluminum reacts with the halogen carrier and in turn reacts with nickel on the surface of the nickel alloy to form the nickel aluminide coating. A masking tape formed from a separating layer, a brazing alloy layer and a nickel layer can be used to mask localized portions of the surface to prevent coating at these areas.
Abstract:
A method of forming a superalloy part comprises: forming a preform from tape, said tape comprising a base metal layer and a braze alloy layer, said base metal layer comprising fibrillated polytetrafluoroethylene and an oxygen-sensitive superalloy base metal powder selected from the group consisting of titanium, aluminum, hafnium, and chromium, and said braze alloy layer comprising fibrilated polytetrafluoroethylene and braze alloy; heating the preform in an hydrogen or vacuum environment. Another method of forming a superalloy part comprises using a tape comprising fibrilated polytetrafluoroethylene, said oxygen-sensitive superalloy base metal powder, and powdered braze alloy.
Abstract:
A masking tape for preventing the formation of coatings such as nickel aluminide on localized areas of a surface is formed from a tape comprising a first separating layer containing powdered metal oxide and a polytetrafluoroethylene binder; a second brazing alloy layer comprising a metal selected from the group consisting of brazing alloy, nickel, cobalt, iron, mixtures thereof, and alloys thereof in a fibrillated polytetrafluoroethylene binder; and an optional third layer comprising a powdered metal selected from the group consisting of nickel, cobalt, and iron in a fibrillated polytetrafluoroethylene binder.