摘要:
A resistance variable element (100) used in a through-hole cross-point structure memory device, according to the present invention, and a resistance variable memory device including the resistance variable element, includes a substrate (7) and an interlayer insulating layer (3) formed on the substrate, and have a configuration in which a through-hole (4) is formed to penetrate the interlayer insulating layer, a first resistance variable layer (2) comprising transition metal oxide is formed outside the through-hole, a second resistance variable layer (5) comprising transition metal oxide is formed inside the through-hole, the first resistance variable layer is different in resistivity from the second resistance variable layer, and the first resistance variable layer and the second resistance variable layer are in contact with each other only in an opening (20) of the through-hole which is closer to the substrate.
摘要:
A resistance variable element (100) used in a through-hole cross-point structure memory device, according to the present invention, and a resistance variable memory device including the resistance variable element, includes a substrate (7) and an interlayer insulating layer (3) formed on the substrate, and have a configuration in which a through-hole (4) is formed to penetrate the interlayer insulating layer, a first resistance variable layer (2) comprising transition metal oxide is formed outside the through-hole, a second resistance variable layer (5) comprising transition metal oxide is formed inside the through-hole, the first resistance variable layer is different in resistivity from the second resistance variable layer, and the first resistance variable layer and the second resistance variable layer are in contact with each other only in an opening (20) of the through-hole which is closer to the substrate.
摘要:
A nonvolatile semiconductor memory device (100) comprises a substrate (102) provided with a transistor (101); a first interlayer insulating layer (103) formed over the substrate to cover the transistor; a first contact plug (104) formed in the first interlayer insulating layer and electrically connected to either of a drain electrode (101a) or a source electrode (101b) of the transistor, and a second contact plug (105) formed in the first interlayer insulating layer and electrically connected to the other of the drain electrode or the source electrode of the transistor; a resistance variable layer (106) formed to cover a portion of the first contact plug; a first wire (107) formed on the resistance variable layer; and a second wire (108) formed to cover a portion of the second contact plug; an end surface of the resistance variable layer being coplanar with an end surface of the first wire.
摘要:
Memory elements (3) arranged in matrix in a memory apparatus (21), each includes a resistance variable element (1) which changes an electrical resistance value in response to an applied electrical pulse having a positive polarity or a negative polarity and maintains the changed electrical resistance value, and a current suppressing element (2) for suppressing a current flowing when the electrical pulse is applied to the resistance variable element. The current suppressing element includes a first electrode, a second electrode, and a current suppressing layer provided between the first electrode and the second electrode, and the current suppressing layer comprises SiNx (x: positive actual number).
摘要:
A nonvolatile semiconductor memory device (100) comprises a substrate (102) provided with a transistor (101); a first interlayer insulating layer (103) formed over the substrate to cover the transistor; a first contact plug (104) formed in the first interlayer insulating layer and electrically connected to either of a drain electrode (101a) or a source electrode (101b) of the transistor, and a second contact plug (105) formed in the first interlayer insulating layer and electrically connected to the other of the drain electrode or the source electrode of the transistor; a resistance variable layer (106) formed to cover a portion of the first contact plug; a first wire (107) formed on the resistance variable layer; and a second wire (108) formed to cover a portion of the second contact plug; an end surface of the resistance variable layer being coplanar with an end surface of the first wire.
摘要:
A current steering element which can prevent occurrence of write disturb even when electric pulses having different polarities are applied and can cause large current to flow through a variable resistance element, and with which data can be written without problem. In a storage element (3) including: a variable resistance element (1) whose electric resistance value changes in response to application of electric pulses having a positive polarity and a negative polarity and which maintains the changed electric resistance value; and the current steering element (2) that steers current flowing through the variable resistance element (1) when the electric pulses are applied, the current steering element (2) includes: a first electrode (32); a second electrode (31); and a current steering layer (33) interposed between the first electrode (32) and the second electrode (31). When the current steering layer (33) includes SiNx (0
摘要:
A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
摘要:
A method for manufacturing a nonvolatile storage element that minimizes shape shift between an upper electrode and a lower electrode, and which includes: depositing, in sequence, a connecting electrode layer which is conductive, a lower electrode layer and a variable resistance layer which are made of a non-noble metal nitride and are conductive, an upper electrode layer made of noble metal, and a mask layer; forming the mask layer into a predetermined shape; forming the upper electrode layer, the variable resistance layer, and the lower electrode layer into the predetermined shape by etching using the mask layer as a mask; and removing, simultaneously, the mask and a region of the connecting electrode layer that has been exposed by the etching.
摘要:
A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
摘要:
A method for manufacturing a nonvolatile storage element that minimizes shape shift between an upper electrode and a lower electrode, and which includes: depositing, in sequence, a connecting electrode layer which is conductive, a lower electrode layer and a variable resistance layer which are made of a non-noble metal nitride and are conductive, an upper electrode layer made of noble metal, and a mask layer; forming the mask layer, into a predetermined shape; forming the upper electrode layer, the variable resistance layer, and the lower electrode layer into the predetermined shape by etching using the mask layer as a mask; and removing, simultaneously, the mask and a region of the connecting electrode layer that has been exposed by the etching.