Abstract:
An object of the present invention is to provide an inorganic core/shell particle to be contained in an abrasive material that contains a reduced amount of cerium, can polish harder workpieces at a high polishing rate, and can decrease the surface roughness of the workpieces. The inorganic core/shell particle P of the present invention is to be contained in an abrasive material and includes a core (1) containing a salt of at least one element selected from yttrium (Y), titanium (Ti), strontium (Sr), barium (Ba), samarium (Sm), europium (Eu), gadolinium (Gd), and terbium (Tb) and a shell (2) containing a salt of at least one element selected from these eight elements and a salt of cerium (Ce), wherein the crystallites in the shell (2) have an average diameter within a range of 4 to 30 nm.
Abstract:
Provided is an electrostatic latent image developing toner capable of preventing a release agent from adhering to a member such as a paper conveying roller or the like.An electrostatic latent image developing toner contains at least a binder resin, a colorant, and a release agent, wherein the release agent contains at least an ester wax and the ester wax is an ester wax having a total carbon number of 45 or more and 71 or less, and a top temperature of an exothermic peak during cooling of the electrostatic latent image developing toner measured by a differential scanning calorimetry is within a range of 60° C. or higher and 85° C. or lower.
Abstract:
Disclosed is an image forming method including: developing, with an electrostatic charge image developing toner, a latent image formed on a photoreceptor in which a photosensitive layer is formed on a support containing aluminum as a main component; transferring a toner image on the photoreceptor onto a transfer target; and rubbing and removing the electrostatic charge image developing toner remaining on the photoreceptor after the transferring. The support contains silicon in a range of more than 0.6% by mass and 12.6% by mass or less, a shape factor of toner particles included in the electrostatic charge image developing toner is in a range of 0.800 to 0.970, and a content of the toner particles having a particle diameter of 2 μm or less is in a range of 5% by number to 30% by number.
Abstract:
The present invention addresses the problem of providing spherical zinc oxide particles which have an average particle diameter within a specific range, have excellent monodispersity, and have a high plasmon resonance intensity. Also provided are a process for producing the spherical zinc oxide particles and a plasmon sensor chip obtained using the spherical zinc oxide particles, the chip having high sensitivity and being reduced in angle dependence during measurement. The spherical zinc oxide particles have been doped with one or more metallic elements selected from the group consisting of gallium (Ga), europium (Eu), cerium (Ce), praseodymium (Pr), samarium (Sm), gadolinium (Gd), terbium (Tb), neodymium (Nd), and ytterbium (Yb), have an average particle diameter within the range of 50 to 5,000 nm, and have a variation coefficient in particle diameter distribution within the range of 1.0 to 10%.
Abstract:
An object of the present invention is to provide a new electrostatic latent image developing toner capable of suppressing adhesiveness of a release agent to a member such as a roller or the like and capable of suppressing gloss unevenness and gloss memory.An electrostatic latent image developing toner containing a binder resin, a release agent, and a colorant, wherein the binder resin contains a crystalline resin, the release agent contains a hydrocarbon wax having a branching degree of 3 to 52%, and a top temperature of an exothermic peak during cooling of the electrostatic latent image developing toner measured by a differential scanning calorimetry is within a range of 60 to 85° C.
Abstract:
Disclosed are polishing material particles which have polishing performance suitable for precision polishing and also have a high polishing speed and high monodispersibility; a polishing material containing the polishing material particles; and a polishing processing method using the polishing material. The polishing material particles are spherical particles having an average aspect ratio of 1.00 to 1.15, wherein the particle diameter (D50 (nm)) of the polishing material particles as determined from a particle diameter cumulative distribution curve falls within the range from 50 to 1500 nm. The average content of cerium or the total content of cerium and at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm) and europium (Eu) in the polishing material particles is 81 mol % or more relative to the total content of all of rare earth elements that constitute the polishing material particles.
Abstract:
A toner set includes a plurality of toners, wherein the toner set includes a first toner containing a yellow colorant and a second toner containing a cyan colorant, the first toner and the second toner each contain a binder resin containing a vinyl-based resin and a crystalline resin, and a release agent containing a hydrocarbon wax, a content of the vinyl-based resin with respect to a total mass of the binder resin is 50% by mass or more, the first toner contains the crystalline resin having a moiety having a crystal structure and a crystal nucleating agent moiety having a crystal nucleating agent, and the second toner contains the cyan colorant that is a compound represented by general formula (1).
Abstract:
An electrostatic latent image developing toner set of the present invention is an electrostatic latent image developing toner set including at least a yellow toner, a magenta toner, and a cyan toner, wherein when exothermic peak top temperatures during decreasing temperature in differential scanning calorimetry of the yellow toner, the magenta toner, and the cyan toner are assumed to be P(Y), P(M), and P(C), respectively, the exothermic peak top temperatures satisfy the following expression (1). 70≤P(Y)≤P(M)≤P(C)≤90(° C.) (1)