Abstract:
A polishing system performs chemical-mechanical polishing of an object to be polished using an abrasive slurry. The polishing system includes a polishing amount calculator that measures an amount of free metal ions of a metallic element derived from the object to be polished in a processed slurry and calculates a polishing amount of the object to be polished from the amount of the free metal ions. The object to be polished is a glass containing the metallic element of Group 1 or Group 2 of a periodic table.
Abstract:
Disclosed are polishing material particles which have polishing performance suitable for precision polishing and also have a high polishing speed and high monodispersibility; a polishing material containing the polishing material particles; and a polishing processing method using the polishing material. The polishing material particles are spherical particles having an average aspect ratio of 1.00 to 1.15, wherein the particle diameter (D50 (nm)) of the polishing material particles as determined from a particle diameter cumulative distribution curve falls within the range from 50 to 1500 nm. The average content of cerium or the total content of cerium and at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm) and europium (Eu) in the polishing material particles is 81 mol % or more relative to the total content of all of rare earth elements that constitute the polishing material particles.
Abstract:
A polishing agent regenerating method in which a component of a polished material is removed from polishing agent slurry and a polishing agent is collected and regenerated is shown. The method includes at least, polishing, polishing agent slurry supplying, polishing agent slurry collecting, and sedimenting/separating/concentrating, performed in the above order. In the polishing agent slurry collecting or the sedimenting/separating/concentrating, a K2O density in the polishing agent slurry after dilution by water is performed is to be within a range of 0.002-0.2 mass %.
Abstract:
The present invention addresses the problem of providing spherical zinc oxide particles which have an average particle diameter within a specific range, have excellent monodispersity, and have a high plasmon resonance intensity. Also provided are a process for producing the spherical zinc oxide particles and a plasmon sensor chip obtained using the spherical zinc oxide particles, the chip having high sensitivity and being reduced in angle dependence during measurement. The spherical zinc oxide particles have been doped with one or more metallic elements selected from the group consisting of gallium (Ga), europium (Eu), cerium (Ce), praseodymium (Pr), samarium (Sm), gadolinium (Gd), terbium (Tb), neodymium (Nd), and ytterbium (Yb), have an average particle diameter within the range of 50 to 5,000 nm, and have a variation coefficient in particle diameter distribution within the range of 1.0 to 10%.
Abstract:
A recycled polishing agent slurry is prepared from a used polishing agent slurry after polishing a silicon material using a reference polishing agent slurry including a cerium oxide polishing agent and a dispersing agent. The preparation method includes: slurry collecting in which the used slurry discharged from a polishing machine is collected; separation and concentration in which the cerium oxide polishing agent in the collected slurry is separated from a component derived from the material to be polished and then concentrated, and polishing agent recycling in which a pH adjusting agent and the dispersing agent are added to the separated and concentrated cerium oxide polishing agent, and a recycled polishing agent slurry is adjusted to have a pH value at 25° C. of in a range of 6.0 to 10.5 and an electrical conductivity value in a range of 0.10 to 10.00 times that of the reference slurry.
Abstract:
Provided is a quality inspection method in which an inner state of a three-dimensional laminated molding can be quickly and easily inspected without destroying the three-dimensional laminated molding. To this end, the quality inspection method uses an X-ray Talbot imaging system 1 which creates a reconstructed image of an inspection object on the basis of a moire image obtained by using an X-ray detector to read X-rays which, after being radiated from an X-ray source 11a, have passed through: a plurality of grids in which a plurality of slits S are arranged in a direction perpendicular to the radiation axis direction of the X-ray; and an inspection object H placed on a subject table 13. The inspection object H is a three-dimensional laminated molding formed into a three-dimensional shape by laminating multiple layers of constituent materials. The reconstructed image is created while the inspection object H is placed on the subject table 13 in such a way that at least the lamination direction of layers constituting the inspection object H and the arrangement direction of the plurality of slits S in the plurality of grids are parallel. The inner state of the inspection object H is inspected on the basis of the reconstructed image.
Abstract:
The present invention addresses the problem of providing a three-dimensional modeled article having high dimensional precision, high strength, and high ductility, and a resin composition for a three-dimensional modeled article, the resin composition being used to fabricate the three-dimensional modeled article, and of providing a method for manufacturing a three-dimensional modeled article. To address this problem, a resin composition for a three-dimensional modeled article according to the present invention contains resin particles having a continuous phase including a thermoplastic resin, and a dispersed phase including a thermoplastic elastomer, dispersed in the continuous phase, the amount of the thermoplastic elastomer therein being 1-12 parts by mass with respect to a total of 100 parts by mass of the thermoplastic resin and the thermoplastic elastomer.
Abstract:
A powder material is used in a method for manufacturing a three-dimensional shaped object, the method including: repeatedly performing preheating of a powder material containing coated particles and selective laser light irradiation of a thin layer of the powder material; and laminating together a plurality of shaped object layers of which at least some of the coated particles are fused and coupled to each other. The coated particles include a core resin and a shell material which coats the core resin and which is made of an inorganic material. An average linear expansion coefficient of the core resin at 20 to 100° C. is 5 to 240 with respect to an average linear expansion coefficient of the shell material at 20° C. to 100° C. The shell material breaks in a range between the softening temperature of the core resin and the softening temperature+50° C.
Abstract:
An object of the present invention is to provide an inorganic core/shell particle to be contained in an abrasive material that contains a reduced amount of cerium, can polish harder workpieces at a high polishing rate, and can decrease the surface roughness of the workpieces. The inorganic core/shell particle P of the present invention is to be contained in an abrasive material and includes a core (1) containing a salt of at least one element selected from yttrium (Y), titanium (Ti), strontium (Sr), barium (Ba), samarium (Sm), europium (Eu), gadolinium (Gd), and terbium (Tb) and a shell (2) containing a salt of at least one element selected from these eight elements and a salt of cerium (Ce), wherein the crystallites in the shell (2) have an average diameter within a range of 4 to 30 nm.