摘要:
A niobium hydride or niobium hydride alloy is ground at a temperature of −200 to 30° C. in the presence of a dispersion medium to obtain a niobium powder for capacitors, having a low oxygen content, the niobium powder for capacitors is granulated to obtain a niobium granulated product for capacitors, having an average particle size of 10 to 500 &mgr;m, the niobium powder or granulated powder for capacitors is sintered to obtain a sintered body, and a capacitor is fabricated by forming a dielectric material on the surface of the sintered body and providing another part electrode on the dielectric material, whereby a capacitor having good LC characteristics and less dispersed in the LC characteristics is obtained.
摘要:
A niobium hydride or niobium hydride alloy is ground at a temperature of −200 to 30° C. in the presence of a dispersion medium to obtain a niobium powder for capacitors, having a low oxygen content, the niobium powder for capacitors is granulated to obtain a niobium granulated product for capacitors, having an average particle size of 10 to 500 μm, the niobium powder or granulated powder for capacitors is sintered to obtain a sintered body, and a capacitor is fabricated by forming a dielectric material on the surface of the sintered body and providing another part electrode on the dielectric material, whereby a capacitor having good LC characteristics and less dispersed in the LC characteristics is obtained.
摘要:
(1) A niobium monoxide powder for a capacitor represented by formula: NbOx (x=0.8 to 1.2) and optionally containing other elements in an amount of 50 to 200,000 ppm, having a tapping density of 0.5 to 2.5 g/ml, an average particle size of 10 to 1000 μm, angle of repose from 10° to 60°, the BET specific surface area from 0.5 to 40 m2/g and a plurality of pore diameter peak tops in the pore distribution, and a producing method thereof; (2) a niobium monoxide sintered body, which is obtained by sintering the above niobium monoxide powder and, having a plurality of pore diameter peak tops in a range of 0.01 μm to 500 μm, preferably, the peak tops of two peaks among the plurality of pore diameter peak tops having a highest relative intensity are present in the range of 0.2 to 0.7 μm and in the range of 0.7 to 3 μm, respectively, and a producing method thereof; (3) a capacitor using the above sintered body and a producing method thereof; and (4) an electronic circuit and electronic device using the above capacitor.
摘要:
A niobium powder for a capacitor having a tapping density of 0.5 to 2.5 g/ml, and average particle size of 10 to 1000 μmum, angle of repose form 10° to 60°, the BET specific surface area from 0.5 to 40 m2/g and a plurity of pore diameter peak tops in the pore distribution, and a producing method therof; (2) a niobium sintered body, which is obtained by sintering the above niobium powder and, having a plurality of pore diameter peak tops in a range of 0.01 μmum to 500 μmum, preferably, the peak tops of two peaks among the plurality of pore diameter peak tops having a highest relative intensity are present in the range of 0.2 to 0.7 μmum and in the range of 0.7 to 3 μmum, respectively, and a producing method thereof; (3) a capacitor using the above sintered body and a producing method thereof, and (4) an electronic circuit and electronic device using the above capacitor.
摘要:
(1) A niobium monoxide powder for a capacitor represented by formula: NbOx (x=0.8 to 1.2) and optionally containing other elements in an amount of 50 to 200,000 ppm, having a tapping density of 0.5 to 2.5 g/ml, an average particle size of 10 to 1000 μm, angle of repose from 10° to 60°, the BET specific surface area from 0.5 to 40 m2/g and a plurality of pore diameter peak tops in the pore distribution, and a producing method thereof; (2) a niobium monoxide sintered body, which is obtained by sintering the above niobium monoxide powder and, having a plurality of pore diameter peak tops in a range of 0.01 μm to 500 μm, preferably, the peak tops of two peaks among the plurality of pore diameter peak tops having a highest relative intensity are present in the range of 0.2 to 0.7 μm and in the range of 0.7 to 3 μm, respectively, and a producing method thereof; (3) a capacitor using the above sintered body and a producing method thereof; and (4) an electronic circuit and electronic device using the above capacitor.
摘要:
(1) A niobium powder for a capacitor having a tapping density of 0.5 to 2.5 g/ml, an average particle size of 10 to 1000 μm, angle of repose from 10° to 60°, the BET specific surface area from 0.5 to 40 m2/g and a plurality of pore diameter peak tops in the pore distribution, and a producing method thereof; (2) a niobium sintered body, which is obtained by sintering the above niobium powder and, having a plurality of pore diameter peak tops in a range of 0.01 μm to 500 μm, preferably, the peak tops of two peaks among the plurality of pore diameter peak tops having a highest relative intensity are present in the range of 0.2 to 0.7 μm and in the range of 0.7 to 3 μm, respectively, and a producing method thereof; (3) a capacitor using the above sintered body and a producing method thereof; and (4) an electronic circuit and electronic device using the above capacitor.
摘要翻译:(1)一种用于电容器的铌粉末,其具有0.5-2.5g / ml的敲击密度,10-1000μm的平均粒度,10°至60°的休止角,BET比表面积为0.5至40 m 2和/或多孔孔分布中的孔径峰顶及其制造方法。 (2)一种铌烧结体,其通过烧结上述铌粉末而得到,并且具有0.01μm〜500μm的多个孔径峰顶,优选为多个孔中的两个峰的峰顶 具有最高相对强度的直径峰顶分别存在于0.2至0.7μm的范围内且在0.7至3μm的范围内。 (3)使用上述烧结体的电容器及其制造方法; 和(4)使用上述电容器的电子电路和电子装置。
摘要:
(1) A niobium monoxide powder for a capacitor represented by formula: NbOx (x=0.8 to 1.2) and optionally containing other elements in an amount of 50 to 200,000 ppm, having a tapping density of 0.5 to 2.5 g/ml, an average particle size of 10 to 1000 μm, angle of repose from 10° to 60°, the BET specific surface area from 0.5 to 40 m2/g and a plurality of pore diameter peak tops in the pore distribution, and a producing method thereof; (2) a niobium monoxide sintered body, which is obtained by sintering the above niobium monoxide powder and, having a plurality of pore diameter peak tops in a range of 0.01 μm to 500 μm, preferably, the peak tops of two peaks among the plurality of pore diameter peak tops having a highest relative intensity are present in the range of 0.2 to 0.7 μm and in the range of 0.7 to 3 μm, respectively, and a producing method thereof; (3) a capacitor using the above sintered body and a producing method thereof; and (4) an electronic circuit and electronic device using the above capacitor.
摘要:
(1) A niobium powder for a capacitor having a tapping density of 0.5 to 2.5 g/ml, an average particle size of 10 to 1000 μm, angle of repose from 10° to 60°, the BET specific surface area from 0.5 to 40 m2/g and a plurality of pore diameter peak tops in the pore distribution, and a producing method thereof; (2) a niobium sintered body, which is obtained by sintering the above niobium powder and, having a plurality of pore diameter peak tops in a range of 0.01 μm to 500 μm, preferably, the peak tops of two peaks among the plurality of pore diameter peak tops having a highest relative intensity are present in the range of 0.2 to 0.7 μm and in the range of 0.7 to 3 μm, respectively, and a producing method thereof; (3) a capacitor using the above sintered body and a producing method thereof; and (4) an electronic circuit and electronic device using the above capacitor.
摘要翻译:(1)一种用于电容器的铌粉末,其具有0.5-2.5g / ml的敲击密度,10-1000μm的平均粒度,10°至60°的休止角,BET比表面积为0.5-40 m 2和/或多孔孔分布中的孔径峰顶及其制造方法。 (2)一种铌烧结体,其通过烧结上述铌粉末而得到,并且具有0.01μm〜500μm的多个孔径峰顶,优选为多个孔中的两个峰的峰顶 具有最高相对强度的直径峰顶分别存在于0.2至0.7μm的范围内且在0.7至3μm的范围内。 (3)使用上述烧结体的电容器及其制造方法; 和(4)使用上述电容器的电子电路和电子装置。
摘要:
The polynucleotide construct of (1) or (2) below is used to perform ribosome display, CIS display and/or mRNA display in order to screen a Fab against an antigen of interest: (1) a polynucleotide construct which monocistronically comprises a ribosome-binding sequence, Fab first chain-coding sequence, linker peptide-coding sequence, Fab second chain-coding sequence and scaffold-coding sequence in this order, and further comprises at its 3′-end a structure necessary for maintaining a complex with the Fab encoded by itself; and (2) a polynucleotide construct which comprises a Fab first chain-expressing cistron and a Fab second chain-expressing cistron each containing a ribosome-binding sequence, a Fab first chain-coding sequence or Fab second chain-coding sequence, and a scaffold-coding sequence in this order, the first Fab-expressing cistron further comprising at its 3′-end a ribosome stall sequence, said Fab second chain-expressing cistron further comprising at its 3′-end a structure necessary for maintaining a complex with the Fab encoded by itself.
摘要:
A digital-analog converter for producing less distorted output waveforms without the need for an increase in the operating speed of components. A D/A converter 1 comprises a memory 10, an address counter 12, a B spline function generation circuit 14, four sampling function generation circuits 16, three delay circuits 18, four amplifiers 20, and three adding circuits 22, 24 and 26. Four items of digital data supplied one after another in the predetermined time interval T are stored in the memory 10. The gain of each of the four amplifiers 20 is set according to the corresponding digital data. The four sampling function generation circuits 16 generate signal waveforms of the sampling function, which appear individually in points a time T away from one another. The signal waveforms are amplified in the amplifier 20 and added to produce an analog signal associated with the interpolation value.
摘要翻译:数字模拟转换器,用于产生较小失真的输出波形,而不需要增加组件的运行速度。 AD / A转换器1包括存储器10,地址计数器12,B样条函数产生电路14,四个采样函数产生电路16,三个延迟电路18,四个放大器20和三个加法电路22,24和26。 在预定时间间隔T中一个接一个地提供的数字数据的项目被存储在存储器10中。四个放大器20中的每个的增益根据相应的数字数据被设置。 四个采样函数发生电路16产生采样功能的信号波形,它们以时间T彼此分开出现。 信号波形在放大器20中放大并相加以产生与内插值相关联的模拟信号。