摘要:
A method for refreshing PCRAM cells programmed to a low resistance state and entire arrays of PCRAM cells uses a simple refresh scheme which does not require separate control and application of discrete refresh voltages to the PCRAM cells in an array. Specifically, the array structure of a PCRAM device is constructed to allow leakage current to flow through each programmed cell in the array to refresh the programmed state. In one embodiment, the leakage current flows across the access device between the anode of the memory element and the bit line to which the cell is connected, for each memory cell in the array which has been programmed to the low resistance state. In another embodiment, the leakage current flows to the programmed cells through a doped substrate or doped regions of a substrate on which each cell is formed. An entire array is refreshed simultaneously by forming each memory element in the array to have one common anode formed as a single cell plate for the array. Only PCRAM cells in the array written to the low resistance state are refreshed by the controlled leakage current, whereas cells in the high resistance state are not affected by the refresh operation.
摘要:
A method for controlling silver doping of a chalcogenide glass in a resistance variable memory element is disclosed herein. The method includes forming a thin metal containing layer having a thickness of less than about 250 Angstroms over a second chalcogenide glass layer, formed over a first metal containing layer, formed over a first chalcogenide glass layer. The thin metal containing layer preferably is a silver layer. An electrode may be formed over the thin silver layer. The electrode preferably does not contain silver.
摘要:
The invention relates to the fabrication of a resistance variable material cell or programmable metallization cell. The processes described herein can form a metal-rich metal chalcogenide, such as, for example, silver-rich silver selenide. Advantageously, the processes can form the metal-rich metal chalcogenide without the use of photodoping techniques and without direct deposition of the metal. For example, the process can remove selenium from silver selenide.
摘要:
A method for refreshing PCRAM cells programmed to a low resistance state and entire arrays of PCRAM cells uses a simple refresh scheme which does not require separate control and application of discrete refresh voltages to the PCRAM cells in an array. Specifically, the array structure of a PCRAM device is constructed to allow leakage current to flow through each programmed cell in the array to refresh the programmed state. In one embodiment, the leakage current flows across the access device between the anode of the memory element and the bit line to which the cell is connected, for each memory cell in the array which has been programmed to the low resistance state. In another embodiment, the leakage current flows to the programmed cells through a doped substrate or doped regions of a substrate on which each cell is formed. An entire array is refreshed simultaneously by forming each memory element in the array to have one common anode formed as a single cell plate for the array. Only PCRAM cells in the array written to the low resistance state are refreshed by the controlled leakage current, whereas cells in the high resistance state are not affected by the refresh operation.
摘要:
A low-volatility or non-volatility memory device utilizing zero field splitting properties to store data. In response to an electrical pulse or a light pulse, in the absence of any externally applied magnetic field, the host material can switch between stable energy-absorbing states based on the zero field splitting properties of the metal ions and the surrounding host material. The invention also includes a device and method for the storage of multiple bits in a single cell using a plurality of metal ion species in a single host material.
摘要:
A memory element having a first electrode is provided, wherein the first electrode comprises at least one conductive nanostructure. The memory element further includes a second electrode and a resistance variable material layer between the first and second electrodes. The first electrode electrically is coupled to the resistance variable material. Methods for forming the memory element are also provided.
摘要:
The present invention provides a design for a PCRAM element which incorporates multiple metal-containing germanium-selenide glass layers of diverse stoichiometries. The present invention also provides a method of fabricating the disclosed PCRAM structure.
摘要:
The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
摘要:
A method of forming a non-volatile resistance variable device includes forming a first conductive electrode material on a substrate. A metal doped chalcogenide comprising material is formed over the first conductive electrode material. Such comprises the metal and AxBy, where “B” is selected from S, Se and Te and mixtures thereof, and where “A” comprises at least one element which is selected from Group 13, Group 14, Group 15, or Group 17 of the periodic table. In one aspect, the chalcogenide comprising material is exposed to and HNO3 solution. In one aspect the outer surface is oxidized effective to form a layer comprising at least one of an oxide of “A” or an oxide of “B”. In one aspect, a passivating material is formed over the metal doped chalcogenide comprising material. A second conductive electrode material is deposited, and a second conductive electrode material of the device is ultimately formed therefrom.
摘要:
A method for controlling silver doping of a chalcogenide glass in a resistance variable memory element is disclosed herein. The method includes forming a thin metal containing layer having a thickness of less than about 250 Angstroms over a second chalcogenide glass layer, formed over a first metal containing layer, formed over a first chalcogenide glass layer. The thin metal containing layer preferably is a silver layer. An electrode may be formed over the thin silver layer. The electrode preferably does not contain silver.