摘要:
Within a method for forming a patterned layer there is first provided a topographic substrate. There is then formed conformally over the topographic substrate a blanket target layer formed of a target material, where the blanket target layer has a lower substantially horizontal portion, an upper substantially horizontal portion and an intermediate portion therebetween. There is then formed upon the lower substantially horizontal portion of the blanket target layer a first masking layer formed of a first masking material and formed upon the upper substantially horizontal portion of the blanket target layer a second masking layer formed of a second masking material. There is then etched, while employing an etch method having an enhanced sequential selectivity for the first masking material and the target material with respect to the second masking material, the first masking layer and the lower substantially horizontal portion of the blanket target layer to form a patterned target layer which leaves exposed a portion of the substrate beneath the lower horizontal portion of the blanket target layer while leaving unetched the upper substantially horizontal portion of the blanket target layer. The method is particularly useful for forming patterned capacitor plate layers.
摘要:
A new method to form DRAM cells in an integrated circuit device is achieved. The method comprises providing a substrate. A plurality of STI regions is formed in the substrate. The STI regions comprise trenches in the substrate. The trenches are filled with a first dielectric layer. All of the first dielectric layer is etched away from a first group of the STI regions to form open trenches while leaving the first dielectric layer in a second group of the STI regions. A second dielectric layer is formed overlying the substrate and lining the open trenches. A conductive layer is deposited overlying the second dielectric layer and completely filling the open trenches. The conductive layer is patterned to define DRAM transistor gates and to define DRAM capacitor top plates. Thereafter, ions are implanted into the substrate to form source and drain regions for the transistors.
摘要:
A new method to form DRAM cells in an integrated circuit device is achieved. The method comprises providing a substrate. A plurality of STI regions is formed in the substrate. The STI regions comprise trenches in the substrate. The trenches are filled with a first dielectric layer. All of the first dielectric layer is etched away from a first group of the STI regions to form open trenches while leaving the first dielectric layer in a second group of the STI regions. A second dielectric layer is formed overlying the substrate and lining the open trenches. A conductive layer is deposited overlying the second dielectric layer and completely filling the open trenches. The conductive layer is patterned to define DRAM transistor gates and to define DRAM capacitor top plates. Thereafter, ions are implanted into the substrate to form source and drain regions for the transistors.
摘要:
A new method to form DRAM cells in an integrated circuit device is achieved. The method comprises providing a substrate. A plurality of STI regions is formed in the substrate. The STI regions comprise trenches in the substrate. The trenches are filled with a first dielectric layer. All of the first dielectric layer is etched away from a first group of the STI regions to form open trenches while leaving the first dielectric layer in a second group of the STI regions. A second dielectric layer is formed overlying the substrate and lining the open trenches. A conductive layer is deposited overlying the second dielectric layer and completely filling the open trenches. The conductive layer is patterned to define DRAM transistor gates and to define DRAM capacitor top plates. Thereafter, ions are implanted into the substrate to form source and drain regions for the transistors.
摘要:
Semiconductor devices with orientation-free decoupling capacitors and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes at least one integrated circuit and at least one decoupling capacitor. The at least one decoupling capacitor is oriented in a different direction than the at least one integrated circuit is oriented.
摘要:
A process for forming a composite insulator spacer on the sides of a buried stack capacitor structure, wherein the buried stack capacitor structure is located overlying a portion of an insulator filled, shallow trench isolation (STI) region, has been developed. A thin silicon nitride spacer is first formed on the sides of the completed buried stack capacitor structure, followed by deposition of a silicon oxide layer. An anisotropic dry etch procedure is next employed removing a top portion of the silicon oxide layer, and resulting in a partially defined silicon oxide spacer. A critical wet etch procedure is next used to remove the bottom portion of the silicon oxide layer, defining the final silicon oxide spacer of the composite insulator spacer, now comprised of a silicon oxide spacer on an underlying silicon nitride spacer. The wet etch procedure allows a gradual slope to be created at the composite insulator spacer—STI region interface, reducing the risk of leaving, or forming polysilicon residuals or stringers on the underlying surface, which can occur during definition of a MOSFET gate structure. The elimination of the polysilicon stringers reduces the risk of leakage between SRAM cell elements, such as buried stack capacitor structures, and MOSFET devices.
摘要:
Semiconductor devices with orientation-free decoupling capacitors and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes at least one integrated circuit and at least one decoupling capacitor. The at least one decoupling capacitor is oriented in a different direction than the at least one integrated circuit is oriented.
摘要:
A method for fabricating a dog-bone in a DRAM device, comprising the following steps. A semiconductor structure having an upper silicon layer with STIs formed therein is provided. The semiconductor structure has a LOGIC region and a DRAM region with a stitch region therebetween. A polysilicon layer is formed over the semiconductor structure. A dopant is selectively implanted in the polysilicon region within the DRAM region, and the portion of the stitch region within the DRAM region, to form a doped poly segment, and an undoped poly segment within the LOGIC region, and the portion of the stitch region within the LOGIC region. A hard mask is formed over the doped poly segment and the undoped poly segment and patterned to form at least one patterned first hard mask portion only over the word line doped poly segment within the DRAM region. At least one second mask layer portion is formed over the undoped poly segment within the LOGIC region and at least one third mask layer portion is formed over the doped poly segment in the portion of the stitch region within the DRAM region. The doped poly segment and undoped poly segment are etched to form: undoped poly periphery logic gate portions within the LOGIC region; doped poly dog-bone within the portion of the stitch region within the DRAM region; and doped poly word lines within the DRAM region. The second and third mask layer portions are stripped to expose the undoped poly periphery logic gate portions and the doped poly dog-bone.
摘要:
A new method is provided to create a gradated dopant concentration in the contact plug of DRAM devices whereby a high dopant concentration is present at the bottom of the plug and a low dopant concentration is present at the top of the plug. Two layers of dielectric are deposited; the upper layer serves as a layer to adjust the dopant concentration in the lower layer. This adjustment is done by Rapid Thermal anneal of both layers of dielectric. After the dopant concentration has been adjusted, the upper layer of dielectric is removed and the upper section of the contact node is formed using lightly doped poly. The high dopant concentration at the bottom of the contact plug results in low contact resistance between the plug and the underlying silicon substrate. A low dopant concentration at the top surface of the contact plug results in low oxidation of the surface of the plug.
摘要:
A process for reducing the aspect ratio, for narrow diameter contact holes, formed in thick insulator layers, used to integrate logic and DRAM memory devices, on the same semiconductor chip, has been developed. The process of reducing the aspect ratio, of these contact holes, features initially forming, via patterning procedures, lower, narrow diameter contact holes, to active device regions, in the logic area, while also forming self-aligned contact openings to source/drain regions in the DRAM memory region. After forming tungsten structures, in the lower, narrow diameter contact holes, polycide bitline, and polysilicon capacitor structures, are formed in the DRAM memory region, via deposition, and patterning, of upper level insulator layers, and polysilicon and polycide conductive layers. Upper, narrow diameter openings, are then formed in the upper level insulator layers, exposing the top surface of tungsten structures, located in the lower, narrow diameter contact holes. The formation of upper tungsten structures, in the upper, narrow diameter contact openings completes the process of forming metal structures, in narrow diameter openings, with reduced aspect ratios, achieved via a two stage contact hole opening, and a two stage metal filling procedure.