摘要:
A catheter system and corresponding methods are provided for accessing a blood vessel true lumen from a sub-intimal plane of the vessel. The catheter system includes visualization elements for determining the orientation of the true lumen with respect to the sub-intimal plane at an identified entry site from a position in the sub-intimal plane. The entry site is distal to a chronic total occlusion (CTO). The catheter system also includes a system for physically securing tissue of the sub-intimal plane at the entry site to the catheter system. The attaching system reduces or eliminates catheter float within the sub-intimal space. The catheter system further includes re-entry devices to establish and maintain a path from the sub-intimal plane back into the vessel true lumen.
摘要:
Interventional catheter-based systems and methods are described herein for use in generating an initial pathway through vascular occlusions. The catheter systems generally include two elements. A first element is a Blunt Dissection Catheter including a manually actuated assembly located at the distal tip of the Blunt Dissection Catheter that performs blunt dissection in the vascular occlusion to produce a dissection track, or small pathway through the occlusion. The second element is a Sheath Catheter that serves as a conduit within which the Blunt Dissection Catheter is freely advanced, retracted and rotated. The first and second elements are used in some combination to cross vascular occlusions in both the coronary and peripheral vasculature.
摘要:
Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
摘要:
Methods and apparatus are provided for non-continuous circumferential treatment of a body lumen. Apparatus may be positioned within a body lumen of a patient and may deliver energy at a first lengthwise and angular position to create a less-than-full circumferential treatment zone at the first position. The apparatus also may deliver energy at one or more additional lengthwise and angular positions within the body lumen to create less-than-full circumferential treatment zone(s) at the one or more additional positions that are offset lengthwise and angularly from the first treatment zone. Superimposition of the first treatment zone and the one or more additional treatment zones defines a non-continuous circumferential treatment zone without formation of a continuous circumferential lesion. Various embodiments of methods and apparatus for achieving such non-continuous circumferential treatment are provided.
摘要:
Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
摘要:
Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
摘要:
Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
摘要:
Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
摘要:
Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
摘要:
The present disclosure describes methods and apparatus for renal neuromodulation via stereotactic radiotherapy for the treatment of hypertension, heart failure, chronic kidney disease, diabetes, insulin resistance, metabolic disorder or other ailments. Renal neuromodulation may be achieved by locating renal nerves and then utilizing stereotactic radiotherapy to expose the renal nerves to a radiation dose sufficient to reduce neural activity. A neural location element may be provided for locating target renal nerves, and a stereotactic radiotherapy system may be provided for exposing the located renal nerves to a radiation dose sufficient to reduce the neural activity, with reduced or minimized radiation exposure in adjacent tissue. Renal nerves may be located and targeted at the level of the ganglion and/or at postganglionic positions, as well as at pre-ganglionic positions.