摘要:
An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
摘要:
An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
摘要:
A method, a device and the application for the inspection of defects on the edge region of a wafer (6) is disclosed. At least one illumination device (41) illuminates the edge region (6a) of the wafer (6). At least one optical unit (40) is provided, said optical unit (40) being positionable subject to the position of the defect (88) relative to a top surface (30) of the edge of the wafer (6a) or a bottom surface (31) of the edge of the wafer (6a) or a face (32) of the edge of the wafer (6a) for capturing an image of said defect.
摘要:
An apparatus for inspecting a wafer, comprising at least one illuminator each arranged in an illumination beam path, wherein the at least one illuminator radiates an illumination spot onto a surface of the wafer and being a continuous light source; a detector arranged in a detection beam path has a predetermined spectral sensitivity and records data from the at least one illumination spot from the surface of the wafer; an imager generating a relative movement between the surface of the wafer and the detector, whereby in a meandering movement the illumination spot is passed across the entire surface of the wafer in the scanning direction; and the at least one illumination spot being detected in a plurality of different spectral ranges.
摘要:
An apparatus for inspecting a wafer, comprising a first illuminator for radiating an illumination beam in a first illumination beam path onto a surface of the wafer and being configured as continuous light source; a second illuminator for radiating an illumination light beam in a second illumination beam path onto a surface of the wafer and being configured as continuous light source; a first detector means defining a first detection beam path; a second detector means defining a second detection beam path, wherein the first and the second detector means have a predetermined spectral sensitivity and detect data of at least an illuminated area moveable in a scanning direction on the surface of the wafer in a plurality of different spectral ranges.
摘要:
A device and a method for scanning the whole surface of a wafer are disclosed. The wafer is deposited on a table movable in the X-coordinate direction and in the Y-coordinate direction. A camera and at least one illumination source are arranged opposite the wafer. The camera is a line camera with a detector row, wherein the length of the detector row is less than the diameter of the wafer.
摘要:
An illumination device for a DUV microscope has an illumination beam path, proceeding from a DUV light source in which are arranged a condenser and a reflection filter system which generates a DUV wavelength band and comprises four reflection filters. At these, the illumination beam is reflected in each case at the same reflection angle &agr;, the illumination beam path extending coaxially in front of and behind the reflection filter system. According to the present invention, the reflection angle &agr;=30° and the DUV wavelength band &lgr;DUV+&Dgr;&lgr; has a half-value width of max. 20 nm and a peak with a maximum value S of more than 90% of the incoming light intensity. The resulting very narrow half-value width of the DUV wavelength band makes it possible for the DUV objectives of the DUV microscope to be very well-corrected.
摘要:
Examination devices and methods operating with incident light have hitherto been used for the examination of wafers. To allow these devices also to be used with the transmitted-light method, it is proposed to configure the substrate holder (16) so that an illumination device (38, 40, 42) is integrated into the substrate holder (16) in such a way that transmitted-light illumination of the wafer (18) is possible.
摘要:
Examination devices and methods operating with incident light have hitherto been used for the examination of wafers. To allow these devices also to be used with the transmitted-light method, it is proposed to configure the substrate holder (16) so that an illumination device (38, 40, 42) is integrated into the substrate holder (16) in such a way that transmitted-light illumination of the wafer (18) is possible.
摘要:
An apparatus for measuring feature widths on masks 1 for the semiconductor industry is disclosed. The apparatus encompasses a carrier plate 16 that is retained in vibrationally decoupled fashion in a base frame 14; a scanning stage 18, arranged on the carrier plate 16, that carries a mask 1 to be measured, the mask 1 defining a surface 4; and an objective 2 arranged opposite the mask 1. A liquid 25 is provided between the objective 2 and the surface 4 of the mask 1.