摘要:
A wet chemical processing chamber comprising a fixed unit, a detachable unit releasably coupled to the fixed unit, a seal contacting the fixed unit and the detachable unit, and a processing component disposed in the fixed unit and/or the detachable unit. The fixed unit can have a first flow system configured to direct a processing fluid through the fixed unit and a mounting fixture for fixedly attaching the fixed unit to a platform or deck of an integrated processing tool. The detachable unit can include a second flow system configured to direct the processing fluid to and/or from the first flow system of the fixed unit. The seal has an orifice through which processing fluid can flow between the first and second flow systems, and the processing component can impart a property to the processing fluid for processing a surface on a microfeature workpiece having submicron microfeatures.
摘要:
An electrochemical deposition chamber comprises a head assembly and a vessel under the head assembly. The head assembly includes a workpiece holder configured to position a microfeature workpiece at a processing location and electrical contacts arranged to provide electrical current to a layer on the workpiece. The vessel has a fixed unit including a mounting fixture to attach the fixed unit to a deck of a tool, a detachable unit releasably attachable to the fixed unit below the mounting fixture to be positioned below the deck of the tool, an interface element between the fixed unit and the detachable unit to control processing fluid between the fixed unit and the detachable unit, and an attachment system releasably coupling the detachable unit to the fixed unit. The electrochemical deposition chamber also includes an electrode in the detachable unit.
摘要:
An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel. In one embodiment, the reaction vessel includes: an outer container having an outer wall; a distributor coupled to the outer container, the distributor having a first outlet configured to introduce a primary flow into the outer container and at least one second outlet configured to introduce a secondary flow into the outer container separate from the primary flow; a primary flow guide in the outer container coupled to the distributor to receive the primary flow from the first outlet and direct it to a workpiece processing site; a dielectric field shaping unit in the outer container coupled to the distributor to receive the secondary flow from the second outlet, the field shaping unit being configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container, and the field shaping unit having at least one electrode compartment through which the secondary flow can pass while the secondary flow is separate from the primary flow; an electrode in the electrode compartment; and an interface member carried by the field shaping unit downstream from the electrode, the interface member being in fluid communication with the secondary flow in the electrode compartment, and the interface member being configured to prevent selected matter of the secondary flow from passing to the primary flow.
摘要:
An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel. In one embodiment, the reaction vessel includes: an outer container having an outer wall; a distributor coupled to the outer container, the distributor having a first outlet configured to introduce a primary flow into the outer container and at least one second outlet configured to introduce a secondary flow into the outer container separate from the primary flow; a primary flow guide in the outer container coupled to the distributor to receive the primary flow from the first outlet and direct it to a workpiece processing site; a dielectric field shaping unit in the outer container coupled to the distributor to receive the secondary flow from the second outlet, the field shaping unit being configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container, and the field shaping unit having at least one electrode compartment through which the secondary flow can pass while the secondary flow is separate from the primary flow; an electrode in the electrode compartment; and an interface member carried by the field shaping unit downstream from the electrode, the interface member being in fluid communication with the secondary flow in the electrode compartment, and the interface member being configured to prevent selected matter of the secondary flow from passing to the primary flow.
摘要:
Reactors, systems and methods for electroplating and/or electro-etching microfeature workpieces. Reactors in accordance with the invention have a first chamber configured to direct a first processing solution to a processing zone, a second chamber configured to contain a second processing solution different than the first processing solution, and an ion exchange membrane between the first chamber and the second chamber. The reactors also include (a) a support member in the first chamber that contacts the ion exchange membrane across the surface of the membrane, and (b) a counter electrode in the second chamber. The ion exchange membrane enables a low conductivity catholyte to be used in the first chamber and an inert counter electrode in the second chamber. More specifically, the ion exchange membrane prevents nascent oxygen that evolves from the inert counter electrode from reaching the catholyte to reduce oxidation of constituents of the catholyte, consumption of organic additives in the anolyte, and/or accumulation of bubbles and particulates at the workpiece.
摘要:
An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel. In one embodiment, the reaction vessel includes: an outer container having an outer wall; a distributor coupled to the outer container, the distributor having a first outlet configured to introduce a primary flow into the outer container and at least one second outlet configured to introduce a secondary flow into the outer container separate from the primary flow; a primary flow guide in the outer container coupled to the distributor to receive the primary flow from the first outlet and direct it to a workpiece processing site; a dielectric field shaping unit in the outer container coupled to the distributor to receive the secondary flow from the second outlet, the field shaping unit being configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container, and the field shaping unit having at least one electrode compartment through which the secondary flow can pass while the secondary flow is separate from the primary flow; an electrode in the electrode compartment; and an interface member carried by the field shaping unit downstream from the electrode, the interface member being in fluid communication with the secondary flow in the electrode compartment, and the interface member being configured to prevent selected matter of the secondary flow from passing to the primary flow.
摘要:
A reactor for electrochemically processing at least one surface of a microelectronic workpiece is set forth. The reactor comprises a reactor head including a workpiece support that has one or more electrical contacts positioned to make electrical contact with the microelectronic workpiece. The reactor also includes a processing container having a plurality of nozzles angularly disposed in a sidewall of a principal fluid flow chamber at a level within the principal fluid flow chamber below a surface of a bath of processing fluid normally contained therein during electrochemical processing. A plurality of anodes are disposed at different elevations in the principal fluid flow chamber so as to place them at difference distances from a microelectronic workpiece under process without an intermediate diffuser between the plurality of anodes and the microelectronic workpiece under process. One or more of the plurality of anodes may be in close proximity to the workpiece under process. Still further, one or more of the plurality of anodes may be a virtual anode. The present invention also related to multi-level anode configurations within a principal fluid flow chamber and methods of using the same.
摘要:
A reactor for electrochemically processing at least one surface of a microelectronic workpiece is set forth. The reactor comprises a reactor head including a workpiece support that has one or more electrical contacts positioned to make electrical contact with the microelectronic workpiece. The reactor also includes a processing container having a plurality of nozzles angularly disposed in a sidewall of a principal fluid flow chamber at a level within the principal fluid flow chamber below a surface of a bath of processing fluid normally contained therein during electrochemical processing. A plurality of anodes are disposed at different elevations in the principal fluid flow chamber so as to place them at difference distances from a microelectronic workpiece under process without an intermediate diffuser between the plurality of anodes and the microelectronic workpiece under process. One or more of the plurality of anodes may be in close proximity to the workpiece under process. Still further, one or more of the plurality of anodes may be a virtual anode. The present invention also related to multi-level anode configurations within a principal fluid flow chamber and methods of using the same.
摘要:
An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel. In one embodiment, the reaction vessel includes: an outer container having an outer wall; a distributor coupled to the outer container, the distributor having a first outlet configured to introduce a primary flow into the outer container and at least one second outlet configured to introduce a secondary flow into the outer container separate from the primary flow; a primary flow guide in the outer container coupled to the distributor to receive the primary flow from the first outlet and direct it to a workpiece processing site; a dielectric field shaping unit in the outer container coupled to the distributor to receive the secondary flow from the second outlet, the field shaping unit being configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container, and the field shaping unit having at least one electrode compartment through which the secondary flow can pass while the secondary flow is separate from the primary flow; an electrode in the electrode compartment; and an interface member carried by the field shaping unit downstream from the electrode, the interface member being in fluid communication with the secondary flow in the electrode compartment, and the interface member being configured to prevent selected matter of the secondary flow from passing to the primary flow.
摘要:
An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel. In one embodiment, the reaction vessel includes: an outer container having an outer wall; a distributor coupled to the outer container, the distributor having a first outlet configured to introduce a primary flow into the outer container and at least one second outlet configured to introduce a secondary flow into the outer container separate from the primary flow; a primary flow guide in the outer container coupled to the distributor to receive the primary flow from the first outlet and direct it to a workpiece processing site; a dielectric field shaping unit in the outer container coupled to the distributor to receive the secondary flow from the second outlet, the field shaping unit being configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container, and the field shaping unit having at least one electrode compartment through which the secondary flow can pass while the secondary flow is separate from the primary flow; an electrode in the electrode compartment; and an interface member carried by the field shaping unit downstream from the electrode, the interface member being in fluid communication with the secondary flow in the electrode compartment, and the interface member being configured to prevent selected matter of the secondary flow from passing to the primary flow.