摘要:
A liquid crystal display capable of reducing the stray capacitance of a non-display region and a method of manufacturing the same. The liquid crystal display includes a first substrate, gate lines and data lines intersecting each other on the first substrate to define pixels, a second substrate arranged opposite to the first substrate, a common electrode formed in a display area of the second substrate in which an image is displayed, and a floating electrode formed in a non-display region of the second substrate in which no image is displayed.
摘要:
A touch screen substrate includes a base substrate, a first switching element and a first sensing element which senses infrared light. The first switching element includes a first switching gate electrode, a first active pattern disposed on the first switching gate electrode, a first switching source electrode disposed on the first active pattern and a first switching drain electrode disposed apart from the first switching source electrode. The first sensing element includes a first sensing drain electrode connected to the first switching source electrode, a first sensing source electrode disposed apart from the first sensing drain electrode, a second active pattern disposed below the first sensing drain electrode and the first sensing source electrode and including a first amorphous layer, a doped amorphous layer and a second amorphous layer, and a first sensing gate electrode disposed on the first sensing drain electrode and the first sensing source electrode.
摘要:
An information detection device includes: a plurality of light sensing units each configured to detect light; a plurality of sensor scanning drivers each configured to apply sensor scanning signals to the light sensing units; a sensing signal processor configured to receive position information detected by the light sensing units; a plurality of bias applying units each configured to apply bias voltages to the light sensing units; wherein each bias applying unit applies a different polarity of bias voltage.
摘要:
An anisotropic conductive film includes a first thin film layer including concave portions, conductive balls arranged in the concave portions, insulating balls disposed on and between the conductive balls and each having a diameter smaller than the conductive balls, and a second thin film layer disposed covering the insulating balls. A display apparatus includes a pad part and a driving chip, which are electrically connected by the anisotropic conductive film.
摘要:
In a display apparatus, a light sensor of a display includes a light sensing layer, a source electrode, a drain electrode, an insulating layer, and a gate electrode to sense light from an external source. The light sensing layer is disposed on the substrate to sense light, and the source and drain electrodes are disposed on the light sensing layer and are covered by the insulating layer. The gate electrode is disposed on the insulating layer. An edge of the gate electrode is disposed on the light sensing layer at least in an area where the light sensing layer is overlapped with the source and drain electrodes.
摘要:
An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer.
摘要:
A photosensor includes a substrate, a gate line, and a data line disposed on the substrate. A thin film transistor is connected to the gate line and the data line. A first photo-sensing member is disposed on the substrate, and a first electrode is connected to the thin film transistor and the first photo-sensing member. A second photo-sensing member is disposed on the first photo-sensing member, and a second electrode is connected to the first electrode and the second photo-sensing member.
摘要:
A display apparatus includes a display panel, sensor circuits, and a detection circuit. Each sensor circuit senses at least two external signals different from each other and outputs a sensing signal. The detection circuit receives the sensing signal to detect a position to which the external signals are applied. Each sensor circuit includes sensors commonly connected to an output terminal, a scan line which receives a scan signal, a capacitor disposed between the scan line and the output terminal, charged with a first voltage in response to the scan signal, and charged with a second voltage greater than the first voltage in response to the current signal after the scan line is floated, a switching device which outputs the sensing signal in response to the second voltage, and a readout line which applies the sensing signal output from the switching device to the detection circuit.
摘要:
Provided are a sensor array substrate and a method of fabricating the same. The sensor array substrate includes: a substrate in which a switching element region and a sensor region that senses light are defined; a first semiconductor layer which is formed in the sensor region; a first gate electrode which is formed on the first semiconductor layer and overlaps the first semiconductor layer; a second gate electrode which is formed in the switching element region; a second semiconductor layer which is formed on the second gate electrode and overlaps the second gate electrode; and a light-blocking pattern which is formed on the second semiconductor layer and overlaps the second semiconductor layer, wherein the first semiconductor layer and the second semiconductor layer are disposed on different layers, and the second gate electrode and the light-blocking pattern are electrically connected to each other.
摘要:
A photonic sensor includes a first electrode layer, a second electrode layer, a third electrode layer, a first photon absorption layer, a second photon absorption layer, a third photon absorption layer and a charge blocking layer. The first photon absorption layer includes a dispersion of first nanoparticles, and is configured to transduce a first colored light into corresponding electric charge. The second photon absorption layer includes a dispersion of second nanoparticles, and is configured to transduce a second colored light into corresponding electric charge according to light intensity. The third photon absorption layer includes a dispersion of third nanoparticles, and is configured to transduce a third colored light into corresponding electric charge according to light intensity. The charge blocking layer is formed between the first and second photon absorption layers to block flow of electric charge between the first and second photon absorption layers.