Abstract:
A light-guiding pillar used in a vehicle lamp includes a major structure and a light-guiding structure. The major structure has a light incident surface, a light outgoing surface, an upper surface, and a bottom surface. The upper surface and the bottom surface are disposed between the light incident surface and the light outgoing surface, in which the upper surface and the bottom surface are opposite to each other. The major structure is configured to guide a portion of a light beam entering the major structure through the light incident surface to the light outgoing surface. The light-guiding structure is disposed on the upper surface and configured to guide another portion of the light beam entering the major structure through the light incident surface from the upper surface to the bottom surface with passing through the bottom surface.
Abstract:
A light-emitting diode (LED) module and a lamp using the same are provided. The LED module includes a substrate and several light-emitting packages. Each light-emitting package includes an optical wavelength conversion layer and a light-emitting diode having a first light-output surface, a bonding surface, and several second light-output surfaces. The bonding surface is opposite the first light-output surface and connected to the substrate. The second light-output surfaces are between the first light-output surface and the bonding surface. The optical wavelength conversion layer covers the first and second light-output surfaces. The distance between the bonding surface and the top surface of the optical wavelength conversion layer represents a light source thickness. The distance between two adjacent light-emitting packages represents a spacing of light sources. Specifically, the ratio of the spacing of light sources to the light source thickness is between 1 and 6.3.
Abstract:
A light emitting chip operating under a DC power supply is provided. The light emitting chip includes a substrate and a plurality of light emitting elements. The light emitting elements are arranged on the substrate, and have the same or different area sizes. The light emitting elements are driven by a single driving voltage or sectionally driven by a plurality of driving voltages.
Abstract:
A lens array is disposed on a substrate and includes a plurality of converging lenses. The converging lenses are configured to project light beams and are arranged along a first direction. Two of the light beams respectively converged by adjacent two of the converging lenses at least partially overlap with each other by geometry of the adjacent two converging lenses, a distance between the adjacent two converging lenses, or a combination thereof.
Abstract:
A lighting system including a LED light source, a convex lens, and a light guide post disposed between the LED light source and the convex lens. The light guide post includes a light emitting portion and a light collecting portion connected to the light emitting portion. The light emitting portion has a light guide post-light emitting surface facing the convex lens. The light collecting portion has an internal reflective surface including at least an elliptical surface having a first focal point and a second focal point. The second focal point is located between the first focal point and the convex lens, and the second focal point is located inside the light guide post.
Abstract:
A vehicle lamp includes a heat-dissipation base, a light source mounted on the heat-dissipation base, a lightguide having a light incident surface for receiving light from the light source, a light outgoing surface for projecting a portion of light received from the light source, opposite upper and bottom surfaces disposed between the light incident and light outgoing surfaces, and a light-guiding structure formed on the upper surface. The lightguide is configured to guide a portion of a light beam entering the light incident surface to the light outgoing surface, with the light-guiding structure configured to guide another portion of the light beam entering the light incident surface to be outputted through the bottom surface. A condensing lens is further provided to receive light from the light outgoing surface and the bottom surface.
Abstract:
A light-guiding pillar used in a vehicle lamp includes a major structure and a light-guiding structure. The major structure has a light incident surface, a light outgoing surface, an upper surface, and a bottom surface. The upper surface and the bottom surface are disposed between the light incident surface and the light outgoing surface, in which the upper surface and the bottom surface are opposite to each other. The major structure is configured to guide a portion of a light beam entering the major structure through the light incident surface to the light caving surface. The light-guiding structure is disposed on the upper surface and configured to guide another portion of the light beam entering the major structure through the light incident surface from the upper surface to the bottom surface with passing through the bottom surface.
Abstract:
An LED headlight includes a lens, a heat sink, at least one LED module and a shelter. The lens includes a focal length and a focal plane, wherein the focal plane extends from a focal point of the lens and is perpendicular to an optical axis of the lens. The heat sink is arranged along the optical axis of the lens, and a distance between the heat sink and the lens is greater than a distance between the focal point and the lens. The at least one LED module is arranged along the optical axis of the lens and in contact with the heat sink, a distance between the LED module and the lens is greater than the distance between the focal point and the lens. The shelter is arranged along the focal plane and configured to block light emitted from the LED module.
Abstract:
A light-emitting diode (LED) module and a lamp using the same are provided. The LED module includes a substrate and several light-emitting packages. Each light-emitting package includes an optical wavelength conversion layer and a light-emitting diode having a first light-output surface, a bonding surface, and several second light-output surfaces. The bonding surface is opposite the first light-output surface and connected to the substrate. The second light-output surfaces are between the first light-output surface and the bonding surface. The optical wavelength conversion layer covers the first and second light-output surfaces. The distance between the bonding surface and the top surface of the optical wavelength conversion layer represents a light source thickness. The distance between two adjacent light-emitting packages represents a spacing of light sources. Specifically, the ratio of the spacing of light sources to the light source thickness is between 1 and 6.3.
Abstract:
A light-guiding pillar used in a vehicle lamp includes a major structure and a light-guiding structure. The major structure has a light incident surface, a light outgoing surface, an upper surface, and a bottom surface. The upper surface and the bottom surface are disposed between the light incident surface and the light outgoing surface, in which the upper surface and the bottom surface are opposite to each other. The major structure is configured to guide a portion of a light beam entering the major structure through the light incident surface to the light caving surface. The light-guiding structure is disposed on the upper surface and configured to guide another portion of the light beam entering the major structure through the light incident surface from the upper surface to the bottom surface with passing through the bottom surface.