Abstract:
Provided is a cathode for lithium secondary batteries comprising a combination of one or more compounds selected from Formula 1 and one or more compounds selected from Formula 2. The cathode provides a high power lithium secondary battery composed of a non-aqueous electrolyte which exhibits long lifespan, long-period storage properties and superior stability at ambient temperature and high temperatures.
Abstract:
A battery module having first and second battery cells is provided. The first battery cell has a housing and first and second electrical terminals. The housing extends longitudinally along a first axis and vertically along a second axis. The housing has first, second, third and fourth ends. The first and second ends extend parallel to the first axis. The third and fourth ends extend parallel to the second axis. The first electrical terminal extends from the third end in a direction parallel to the first axis, and has first and second edges extending parallel to the first axis. The first edge is disposed closer to the first end than the second edge of the first electrical terminal. A distance from the second end of the housing to the second edge of the first electrical terminal is greater than a distance from the first end of the housing to the first edge of the first electrical terminal.
Abstract:
Provided is a cathode for lithium secondary batteries comprising a combination of one or more compounds selected from Formula 1 and one or more compounds selected from Formula 2. The cathode provides a high-power lithium secondary battery composed of a non-aqueous electrolyte which exhibits long lifespan, long-period storage properties and superior stability at ambient temperature and high temperatures.
Abstract:
Provided is a lithium secondary battery having improved discharge characteristics in a range of high-rate discharge while minimizing a dead volume and at the same time, having increased cell capacity via increased electrode density and electrode loading amounts, by inclusion of two or more active materials having different redox levels so as to exert superior discharge characteristics in the range of high-rate discharge via sequential action of cathode active materials in a discharge process, and preferably having different particle diameters.
Abstract:
A battery module includes a first battery cell having a first housing and first and second electrical terminals. The first housing has first, second, third and fourth ends. The first and second electrical terminals extend outwardly from the third and fourth ends, respectively. A distance from the second end of the first housing to a second edge of the first electrical terminal is greater than a distance from the first end of the first housing to a first edge of the first electrical terminal. A distance from the second end of the first housing to a second edge of the second electrical terminal is greater than a distance from the first end of the first housing to a first edge of the second electrical terminal. The battery module further includes a cooling fin disposed adjacent to the first battery cell, and a cooling plate coupled to the cooling fin.
Abstract:
Disclosed is a lithium secondary battery, which is low in capacity loss after overdischarge, having excellent capacity restorability after overdischarge and shows an effect of preventing a battery from swelling at a high temperature.
Abstract:
A battery module includes a first battery cell having a first housing and first and second electrical terminals. The first housing has first, second, third and fourth ends. The first and second electrical terminals extend outwardly from the third and fourth ends, respectively. A distance from the second end of the first housing to a second edge of the first electrical terminal is greater than a distance from the first end of the first housing to a first edge of the first electrical terminal A distance from the second end of the first housing to a second edge of the second electrical terminal is greater than a distance from the first end of the first housing to a first edge of the second electrical terminal. The battery module further includes a cooling fin disposed adjacent to the first battery cell, and a cooling plate coupled to the cooling fin.
Abstract:
A battery module having first and second battery cells is provided. The first battery cell has a housing and first and second electrical terminals. The housing extends longitudinally along a first axis and vertically along a second axis. The housing has first, second, third and fourth ends. The first and second ends extend parallel to the first axis. The third and fourth ends extend parallel to the second axis. The first electrical terminal extends from the third end in a direction parallel to the first axis, and has first and second edges extending parallel to the first axis. The first edge is disposed closer to the first end than the second edge of the first electrical terminal. A distance from the second end of the housing to the second edge of the first electrical terminal is greater than a distance from the first end of the housing to the first edge of the first electrical terminal.
Abstract:
A battery module having first and second battery cells is provided. The first battery cell has a housing and first and second electrical terminals. The housing extends longitudinally along a first axis and vertically along a second axis. The housing has first, second, third and fourth ends. The first and second ends extend parallel to the first axis. The third and fourth ends extend parallel to the second axis. The first electrical terminal extends from the third end in a direction parallel to the first axis, and has first and second edges extending parallel to the first axis. The first edge is disposed closer to the first end than the second edge of the first electrical terminal. A distance from the second end of the housing to the second edge of the first electrical terminal is greater than a distance from the first end of the housing to the first edge of the first electrical terminal.
Abstract:
Disclosed is a cathode active material represented by the following Formula 1, the cathode active material being in the form of a solid solution or a composite, and a secondary battery including the cathode active material. wLi2MO3*xLiM′O2*yLiM″2O4*zLi3PO4 (1) wherein 0