Abstract:
A terminal busbar includes a first busbar portion having a coupling plate, and a second busbar portion having a top plate portion, and a fusible member coupled to and between the coupling plate and the top plate portion. The fusible member has a first portion with a groove or an aperture disposed therein. The terminal busbar further includes an overmolded thermoplastic layer encapsulating the first portion of the fusible member and the groove or the aperture. A thickness of the overmolded thermoplastic layer both above and underneath the fusible member is greater than a thickness of the fusible member to prevent secondary arcing.
Abstract:
A battery system includes a first metallic end plate. A first side of the first metallic end plate has first and second slanted surfaces and a first groove. The battery system further includes a first pouch battery cell having a first pouch housing with a first end portion and a second end portion. The first end portion has a first extension portion and first and second slanted end surfaces. The first pouch battery cell is coupled to the first metallic end plate such that the first extension portion of the first pouch battery cell is disposed in the first groove of the first metallic end plate, and the first and second slanted end surfaces of the first pouch battery cell are disposed on and against first and second thermally conductive adhesive portions, respectively, on the first and second slanted surfaces, respectively, of the first metallic end plate.
Abstract:
A thermally conductive base member and a method of assembly are provided. The thermally conductive base member includes first and second metal base members, and a top plate. The first metal base member has a first bottom plate, first and second female coupling portions, and first and second rib portions. The second metal base member has a second bottom plate, a first male coupling portion, and first and second rib portions. The first male coupling portion is disposed in and coupled to the first female coupling portion. The top plate is coupled to a top surface of the first female coupling portion, a top surface of the second female coupling portion, and the first and second rib portions of the first metal base member such that a first flow channel is defined between the first and second rib portions of the first metal base member and the top plate.
Abstract:
A battery pack having a battery module with a bottom surface and a top surface is provided. The battery module includes a plurality of flow channels extending through the battery module from the top surface to the bottom surface. The battery pack includes a base assembly adapted to hold the battery module therein. The base assembly has a bottom wall and a first end and a second end. The bottom surface of the battery module is disposed at an acute angle relative to the bottom wall of the base assembly in a first direction extending from the first end toward the second end. The battery pack includes a cover assembly having a top wall extending substantially parallel to the bottom wall of the base assembly, and a top surface of the battery module that is disposed at an acute angle relative to the top wall of the cover assembly.
Abstract:
A battery cell assembly having a first battery cell and a cooling fin is provided. The first battery cell has a first housing and first and second electrical terminals. The cooling fin is disposed against the first housing. The cooling fin has a substantially rectangular-shaped plate that extends along a longitudinal axis. The substantially rectangular-shaped plate has a plate portion with a first side and a second side. The first side has a first plurality of recessed regions and a first plurality of flat regions. Each recessed region of the first plurality of recessed regions is disposed between two flat regions of the first plurality of flat regions along the longitudinal axis. The first housing of the first battery cell is disposed against the first side such that the first housing contacts the first plurality of flat regions.
Abstract:
A battery module having first and second battery cells is provided. The first battery cell has a housing and first and second electrical terminals. The housing extends longitudinally along a first axis and vertically along a second axis. The housing has first, second, third and fourth ends. The first and second ends extend parallel to the first axis. The third and fourth ends extend parallel to the second axis. The first electrical terminal extends from the third end in a direction parallel to the first axis, and has first and second edges extending parallel to the first axis. The first edge is disposed closer to the first end than the second edge of the first electrical terminal. A distance from the second end of the housing to the second edge of the first electrical terminal is greater than a distance from the first end of the housing to the first edge of the first electrical terminal.
Abstract:
A battery pack having a battery pack housing defining an interior region is provided. The housing further includes an inlet aperture and an outlet aperture communicating with the interior region. The battery pack further includes a battery module that is disposed in the interior region of the battery pack housing proximate to the inlet aperture. The battery module has a first battery cell, a heat exchanger, and first and second end plates. The first battery cell and the heat exchanger are disposed against one another, and are further disposed between the first and second end plates. The heat exchanger defines a first flow path portion therethrough. The first end plate has a first end portion that extends longitudinally past the first end of the first battery cell, and a second end portion that extends longitudinally past the second end of the first battery cell.
Abstract:
A battery system and a method of assembling the battery system are provided. The battery system includes a thermally conductive base member, a thermal transfer member, a thermally conductive adhesive portion, and a battery module. The thermal transfer member has a metal plate with a top portion and a bottom portion. The bottom portion is disposed on the thermally conductive base member. The top portion has a substantially arcuate-shaped groove extending inwardly into the metal plate. The thermally conductive adhesive portion is disposed in the substantially arcuate-shaped groove. The battery module having a first pouch-type battery cell with a first outer housing with a first end portion. The first end portion is disposed on the thermally conductive adhesive portion and is disposed above the arcuate-shaped groove.
Abstract:
A battery system and a method of assembling the battery system are provided. The battery system includes a thermally conductive base member, a thermal transfer member, a thermally conductive adhesive portion, and a battery module. The thermal transfer member has a metal plate with a top portion and a bottom portion. The bottom portion is disposed on the thermally conductive base member. The top portion has a substantially arcuate-shaped groove extending inwardly into the metal plate. The thermally conductive adhesive portion is disposed in the substantially arcuate-shaped groove. The battery module having a first pouch-type battery cell with a first outer housing with a first end portion. The first end portion is disposed on the thermally conductive adhesive portion and is disposed above the arcuate-shaped groove.
Abstract:
A battery cell assembly having a cooling fin with a tube, a substantially rectangular-shaped metal plate, first and second cylindrical coupling members, and first and second O-ring gaskets is provided. The tube has an inlet tube portion and an outlet tube portion. The tube is coupled to a peripheral region of the metal plate. The first cylindrical coupling member has a first aperture extending therethrough, and first and second circumferential grooves. The inlet tube portion is disposed in the first aperture and coupled to the first cylindrical coupling member. The first and second O-ring gaskets are disposed in the first and second circumferential grooves, respectively. The outlet tube portion is disposed in the second aperture and is coupled to the second cylindrical coupling member.