Abstract:
A thin film transistor (TFT) substrate comprises a TFT located on a substrate and including a gate electrode, a first semiconductor layer and a second semiconductor layer, wherein the first semiconductor layer, the gate electrode and the second semiconductor layer vertically stacked, and the first and second semiconductor layers are made of polycrystalline silicon, and wherein the first and second semiconductor layers are electrically connected to each other in series and respectively include first and second channel portions, and at least one of the first and second channel portions has a bent structure in a plan view.
Abstract:
A display device includes a first substrate; a second substrate facing the first substrate; a plurality of first electrodes and a plurality of second electrodes disposed between the first substrate and the second substrate; a third electrode on an outer side of the first substrate or the second substrate, the third electrode including an organic material and a carbon nano-tube; a plurality of first conductive lines extending along a first direction; a plurality of second conductive lines extending along the first direction; a plurality of third conductive lines extending along a second direction; and a thin film transistor including a semiconductor layer, a gate electrode, a source electrode, and a drain electrode. A sheet resistance of the third electrode may be greater than a sheet resistance of each of the plurality of first electrodes and a sheet resistance of each of the plurality of second electrodes.
Abstract:
A method of manufacturing an array substrate for a fringe field switching mode liquid crystal display includes: forming an auxiliary insulating layer on a second passivation layer and having a first thickness; forming first and second photoresist patterns on the auxiliary insulating layer and having second and third thicknesses, respectively, the second thickness greater than the third thickness; etching the auxiliary insulating layer, the second passivation layer and a first passivation layer to form a drain contact hole; performing an ashing to remove the second photoresist pattern and expose the auxiliary insulating layer therebelow; performing a dry etching to remove the auxiliary insulating layer not covered by the first photoresist pattern and expose the first passivation layer and to form an insulating pattern below the first photoresist pattern, the insulating pattern and the first photoresist pattern forming an undercut shape; forming a transparent conductive material layer having a fourth thickness less than the first thickness; and performing a lift-off process to remove the first photoresist pattern and the transparent conductive material layer thereon together and form a pixel electrode as a remaining portion of the transparent conductive material layer.
Abstract:
A touch sensing type liquid crystal display device includes an array substrate includes a first substrate, a common electrode, a pixel electrode, and a touch sensing unit; a color filter substrate including a second substrate and facing the array substrate; an anti-static layer on an outer side of the second substrate and including an organic material and a carbon nano-tube; and a liquid crystal layer between the first substrate and an inner side of the second substrate.
Abstract:
A touch sensing type liquid crystal display device includes an array substrate includes a first substrate, a common electrode, a pixel electrode, and a touch sensing unit; a color filter substrate including a second substrate and facing the array substrate; an anti-static layer on an outer side of the second substrate and including an organic material and a carbon nano-tube; and a liquid crystal layer between the first substrate and an inner side of the second substrate.
Abstract:
Disclosed are a backplane substrate, which is devised to attain circuit characteristics for realizing sufficient gradation even in smaller pixels of a super-high-resolution structure, a manufacturing method for the same, and an organic light-emitting display device using the same, inn the backplane substrate, a driving thin-film transistor has a stack structure different from that of other thin-film transistors so that only the S-factor of the driving thin-film transistor is increased.
Abstract:
Disclosed are a backplane substrate, which is devised to attain circuit characteristics for realizing sufficient gradation even in smaller pixels of a super-high-resolution structure, a manufacturing method for the same, and an organic light-emitting display device using the same, inn the backplane substrate, a driving thin-film transistor has a stack structure different from that of other thin-film transistors so that only the S-factor of the driving thin-film transistor is increased.
Abstract:
Disclosed are an organic light emitting display device capable of achieving an intra-pixel integration design with sufficient storage capcacitance and a method for manufacturing the same in which the organic light emitting display device includes a first active layer connected to the driving gate electrode and the data line while crossing the gate line, and a second active layer spaced apart from the first active layer while overlapping the driving gate electrode and being connected to the current drive line and storage electrode.
Abstract:
A thin film transistor substrate according to an embodiment includes a data line and a light barrier film to overlap an active layer of a thin film transistor, wherein the data line and the light barrier film are formed simultaneously, thereby reducing the cost of fabricating the thin film transistor substrate.
Abstract:
The present disclosure relates to an organic light emitting display device and a method of fabricating the same. The organic light emitting display device comprises a first substrate including a plurality of sub-pixels; a thin film transistor in each of the plurality of sub-pixels and on the first substrate; an organic light emitting diode in each of the plurality of sub-pixels and on the first substrate; and an aging voltage supply line extending from a lower surface of the first substrate to a portion of the thin film transistor and supplying an aging voltage to the thin film transistor.