Abstract:
The present disclosure is directed to compositions, methods and kits for amplifying target nucleic acids while reducing non-specific amplification and undesired amplification products using a dual hot start reaction mixture that comprise at least two different hot start mechanisms.
Abstract:
Method and compositions and kits for isolation, identification, and quantification of miRNAs and other small RNAs, including but not limited to, siRNAs, mRNAs, and snRNAs are disclosed. Methods of diagnosing a disease or its progression are also disclosed.
Abstract:
Method and compositions and kits for isolation, identification, and quantification of miRNAs and other small RNAs, including but not limited to, siRNAs, mRNAs, and snRNAs are disclosed. Methods of diagnosing a disease or its progression are also disclosed.
Abstract:
According to the present teachings, compositions, kits, and methods for protein melt analysis are provided that utilizing one or more fluorophore dyes. In some embodiments, a method comprises preparing a sample by mixing at least one protein with two or more dyes, and applying a controlled heating, while recording the fluorescence emission of the sample. The methods can be used, for example, for screening conditions for optimized protein stability, screening for ligands that bind and enhance protein stability (e.g., protein-protein interactions), screening for mutations for enhanced stability, screening crystallization conditions for protein stability, screening storage conditions for protein stability, and screening conditions in which a protein will be used (e.g., production conditions, treatment conditions, etc.) for protein stability.
Abstract:
According to the present teachings, compositions, kits, and methods for protein melt analysis are provided that utilizing one or more fluorophore dyes. In some embodiments, a method comprises preparing a sample by mixing at least one protein with two or more dyes, and applying a controlled heating, while recording the fluorescence emission of the sample. The methods can be used, for example, for screening conditions for optimized protein stability, screening for ligands that bind and enhance protein stability (e.g., protein-protein interactions), screening for mutations for enhanced stability, screening crystallization conditions for protein stability, screening storage conditions for protein stability, and screening conditions in which a protein will be used (e.g., production conditions, treatment conditions, etc.) for protein stability.
Abstract:
The present disclosure is directed to compositions, methods and kits for amplifying target nucleic acids while reducing non-specific amplification and undesired amplification products using a dual hot start reaction mixture that comprise at least two different hot start mechanisms.
Abstract:
The present disclosure is directed to compositions, methods and kits for amplifying target nucleic acids while reducing non-specific amplification and undesired amplification products using a dual hot start reaction mixture that comprise at least two different hot start mechanisms.
Abstract:
According to the present teachings, compositions, kits, and methods for protein melt analysis are provided that utilizing one or more fluorophore dyes. In some embodiments, a method comprises preparing a sample by mixing at least one protein with two or more dyes, and applying a controlled heating, while recording the fluorescence emission of the sample. The methods can be used, for example, for screening conditions for optimized protein stability, screening for ligands that bind and enhance protein stability (e.g., protein-protein interactions), screening for mutations for enhanced stability, screening crystallization conditions for protein stability, screening storage conditions for protein stability, and screening conditions in which a protein will be used (e.g., production conditions, treatment conditions, etc.) for protein stability.
Abstract:
The present disclosure is directed to compositions, methods and kits for amplifying target nucleic acids while reducing non-specific amplification and undesired amplification products using a dual hot start reaction mixture that comprise at least two different hot start mechanisms.