摘要:
A method of microdissection which involves forming an image field of cells of the tissue sample utilizing a microscope, identifying at least one zone of cells of interest from the image field of cells which at least one zone of cells of interest includes different types of cells than adjacent zones of cells, and extracting the at least one zone of cells of interest from the tissue sample. The extraction is achieved by contacting the tissue sample with a transfer surface that can be selectively activated so that regions thereof adhere to the zone of cells of interest to be extracted. The transfer surface includes a selectively activatable adhesive layer which provides, for example, chemical or electrostatic adherence to the selected regions of the tissue sample. After the transfer surface is activated, the transfer surface and tissue sample are separated. During separation, the zone of cells of interest remains adhered to the transfer surface and is thus separated from the tissue sample, the zone of cells of interest may then be molecularly analyzed.
摘要:
A method of microdissection which involves forming an image field of cells of the tissue sample utilizing a microscope, identifying at least one zone of cells of interest from the image field of cells which at least one zone of cells of interest includes different types of cells than adjacent zones of cells, and extracting the at least one zone of cells of interest from the tissue sample. The extraction is achieved by contacting the tissue sample with a transfer surface that can be selectively activated so that regions thereof adhere to the zone of cells of interest to be extracted. The transfer surface includes a selectively activatable adhesive layer which provides, for example, chemical or electrostatic adherence to the selected regions of the tissue sample. After the transfer surface is activated, the transfer surface and tissue sample are separated. During separation, the zone of cells of interest remains adhered to the transfer surface and is thus separated from the tissue sample, the zone of cells of interest may then be molecularly analyzed.
摘要:
A method of microdissection which involves forming an image field of cells of the tissue sample utilizing a microscope, identifying at least one zone of cells of interest from the image field of cells which at least one zone of cells of interest includes different types of cells than adjacent zones of cells, and extracting the at least one zone of cells of interest from the tissue sample. The extraction is achieved by contacting the tissue sample with a transfer surface that can be selectively activated so that regions thereof adhere to the zone of cells of interest to be extracted. The transfer surface includes a selectively activatable adhesive layer which provides, for example, chemical or electrostatic adherence to the selected regions of the tissue sample. After the transfer surface is activated, the transfer surface and tissue sample are separated. During separation, the zone of cells of interest remains adhered to the transfer surface and is thus separated from the tissue sample, the zone of cells of interest may then be molecularly analyzed.
摘要:
An apparatus and process for the micro juxtaposition is set forth where a selectively activatable surface is maintained spaced apart from the tissue sample and juxtaposed to the tissue sample by activation. In the typical case, activation occurs by laser radiation with the material of the activatable surface thermally expanding and bringing about the desired micro juxtaposition. The disclosed micro juxtapositioning can cause locally and microscopically pressure on tissue sample, insertion to the tissue sample, or contact of an activated or prepared surface to the tissue sample.
摘要:
Laser capture microdissection occurs where the transfer polymer film is placed on a substrate overlying visualized and selected cellular material from a sample for extraction. The transfer polymer film is focally activated (melted) with a pulse brief enough to allow the melted volume to be confined to that polymer directly irradiated. This invention uses brief pulses to reduce the thermal diffusion into surrounding non-irradiated polymer, preventing it from being heated hot enough to melt while providing sufficient heat by direct absorption in the small focal volume directly irradiated by the focused laser beam. This method can be used both in previously disclosed contact LCM, non contact LCM, using either condenser-side (or beam passes through polymer before tissue) or epi-irradiation (or laser passes through tissue before polymer). It can be used in configuration in which laser passes through tissue before polymer with and without an additional rigid substrate. In its preferred configuration it uses the inertial confinement of the surrounding unmelted thermoplastic polymer (and the overlying rigid substrate) to force expansion of the melted polymer into the underlying tissue target. Utilizing the short pulse protocol, the targeted and extracted material can have a diameter equal to or smaller than the exciting beam.
摘要:
A process of microdissection where a tissue sample is conventionally visualized in a microscope. A selectively activatable convex surface is provided, preferably on the periphery at the distal end of a rod. This selectively activatable convex surface when locally activated, typically with a laser through an optic light path in the microscope, provides the activated region with adhesive properties. The tissue sample has at least one portion, which is to be extracted is identified. This identified portion is contacted with a portion of the selectively activatable convex surface on the periphery of the rod. When the convex surface is locally activated, typically by exposure to laser light in the footprint of the desired portion, an adhesive transfer surface on the selectively activatable convex surface is activated which adheres to the desired cells in the footprint of the desired portion. Thereafter, the adhesive transfer surface is separated from the remainder of the tissue sample while maintaining adhesion with the portion of the sample. Thus the desired portion of the tissue sample is extracted. The disclosed selectively activatable convex surface is preferably utilized to collect desired tissue samples at more than one location on the same slide or from different slides. A rod having a convex surface with the selectively activatable material is set forth as a staple for use with the apparatus and process. Preferred shapes for the convex surface are disclosed as well as a method for coating rods.
摘要:
A tissue sample is conventionally visualized in a microscope. A selectively activated convex surface is provided, preferably at the distal end of a rod. This selectively activated convex surface when activated, typically with a laser through an optic light path in the microscope, provides the activated region with adhesive properties. At least one portion of the tissue sample which is to be extracted is identified. This identified portion is contacted with a portion of the selectively activated convex surface on the end of the rod. When the convex surface is activated, typically by exposure to laser light in the footprint of the desired sample, an adhesive transfer surface on the selectively activated convex surface is provided which adheres to the desired cells in the footprint of the desired sample. Thereafter, the adhesive transfer surface is separated from the remainder of the tissue sample while maintaining adhesion with the desired cells. Thus the desired portion of the tissue sample is extracted. The disclosed selectively activated convex surface is preferably utilized to collect desired tissue samples at more than one location on the same slide or from different slides. The collected tissue samples can thereafter be inspected if desired, as collected on the convex surface, and then liberated—as by dissolving the proteins of the samples. This can effectively concentrate rarely occurring cells in order to obtain enough pure material for analysis. A rod having a convex surface with the selectively activated material is set forth as a staple for use with the apparatus and process. Preferred shapes for the convex surface are disclosed as well as a method for coating rods with a resultant rod article.
摘要:
A method and apparatus of gathering by LCM identified cellular material from randorn locations on a tissue sample to designated locations on a transporting substrate enables convenient further processing. A transporting substrate has an identified mapped location for receiving identified cellular material. At least a segment of a selectively activatable coating is placed on the side of the transporting substrate in apposition to the tissue sample at the mapped location. The transporting substrate and sample are relatively moved to place the selectively activated coating at the mapped location in apposition to identified cellular material of the tissue sample which is to be extracted. Thereafter, the selectively activatable coating is activated and impressed or impressed and activated to form an adhesive region on the transporting substrate for adhering to the identified cellular material. Upon removal of the transporting substrate from the tissue sample, identified cellular material adheres to the transporting substrate at the mapped location.
摘要:
Laser capture microdissection occurs where the transfer polymer film is placed on a substrate overlying visualized and selected cellular material from a sample for extraction. The transfer polymer film is focally activated (melted) with a pulse brief enough to allow the melted volume to be confined to that polymer directly irradiated. This invention uses brief pulses to reduce the thermal diffusion into surrounding non-irradiated polymer, preventing it from being heated hot enough to melt while providing sufficient heat by direct absorption in the small focal volume directly irradiated by the focused laser beam. This method can be used both in previously disclosed contact LCM, non contact LCM, using either condenser-side (or beam passes through polymer before tissue) or epi-irradiation (or laser passes through tissue before polymer). It can be used in configuration in which laser passes through tissue before polymer with and without an additional rigid substrate. In its preferred configuration it uses the inertial confinement of the surrounding unmelted thermoplastic polymer (and the overlying rigid substrate) to force expansion of the melted polymer into the underlying tissue target. Utilizing the short pulse protocol, the targeted and extracted material can have a diameter equal to or smaller than the exciting beam.
摘要:
A method of removing a target from a biological sample which involves placing a transfer surface in contact with the biological sample, and then focally altering the transfer surface to allow selective separation of the target from the biological sample. In disclosed embodiments, the target is a cell or cellular component of a tissue section and the transfer surface is a film that can be focally altered to adhere the target to the transfer surface. Subsequent separation of the film from the tissue section selectively removes the adhered target from the tissue section. The transfer surface is activated from within the target to adhere the target to the transfer surface, for example by heating the target to adhere it to a thermoplastic transfer surface. Such in situ activation can be achieved by exposing the biological sample to an immunoreagent that specifically binds to the target (or a component of the target). The immunoreagent can alter the transfer surface directly (for example with a heat generating enzyme carried by the immunoreagent), or indirectly (for example by changing a characteristic of the target). In some embodiments, the immunoreagent deposits a precipitate in the target that increases its light absorption relative to surrounding tissue, such that the biological specimen can be exposed to light to selectively heat the target. Alternatively, the immunoreagent is an immunofluorescent agent that carries a fluorophore that absorbs light and emits heat.