Abstract:
A charged particle control apparatus provides very high voltage particle beams. One or more photocell arrays provide bias voltages for beam accelerating stages. The arrays are made from a number of microfabricated photocells connected in series to produce a voltage output that is the sum of the voltages from the individual cells. Arrays of each stage are connected in series to produce a cumulative stage voltage that is applied to an accelerating electrode made part of the stage.These accelerating stages are disposed within a transparent vacuum chamber and are spaced from a charged particle source stage disposed near one end of the chamber. This charged particle source stage includes an emission source such as a photocathode. The photo arrays of the accelerating stages are connected in series to produce a potential that is applied to the particle source stage.Optical power illuminates the stages to generate desired voltage biases to the accelerating electrodes. A light source is used to excite the photocathode when this emission source is used. Electrons from the emission source are accelerated by the accelerating electrodes and are emitted from the chamber which is typically conjoined with other apparatus.By utilizing photocell arrays to generate beam current and accelerating biases, as well as a photocathode for providing a source of electrons, the apparatus of the invention is completely optically isolated thereby requiring no direct electrical connections to the apparatus even though multiple accelerating stages are used to facilitate the achievement of very high voltage particle beams.
Abstract:
The present invention provides a method for fabricating a silicon-on-insulator voltage multiplier. The method comprises the steps of: forming a first silicon layer having a first concentration of a first dopant with a first polarity on a silicon wafer having a second concentration of a second dopant with a second polarity opposite the first polarity to create a diode junction; forming a second silicon layer on the first silicon layer, the second silicon layer having a third concentration of a third dopant having the first polarity, where the third concentration is greater than the first concentration of the first dopant; forming a silicon dioxide layer on the second silicon layer by thermal oxidation; bonding an insulating substrate to the silicon dioxide layer to create a bonded wafer, where the insulating substrate is selected from the group consisting of quartz, glass, sapphire, and silicon dioxide on silicon; thinning the silicon wafer to form a thinned silicon layer; etching the bonded wafer to form a plurality of separate diodes having sloped sidewalls and to expose selected regions of the insulating substrate; forming an insulating silicon layer on the selected regions of the insulating substrate and on the separate diodes; exposing selected regions of the thinned silicon layer and regions of the second silicon layer of each of the diodes; and forming metal interconnects between the exposed selected regions of the thinned silicon layer of one of the diodes with the silicon layer of another of the diodes.
Abstract:
A light energized high voltage direct current power supply comprises a li source including solid-state laser diodes powered by electrical current at a voltage level, V.sub.1, for generating light; a photocell array positioned to receive the light and fabricated with silicon-on-sapphire for providing electrical power having an output voltage V.sub.2, where V.sub.2 >V.sub.1, where the photocell array includes serially connected photovoltaic cells; and a voltage regulator operably coupled to the light source and the photocell array for controlling the output of the power supply to a predetermined voltage level.
Abstract:
An apparatus and method for non-contact sensing electrical potentials of selected regions on the surface of a sample are provided. A typical sample is an integrated circuit, electronic device, or semiconductor material. The sample is positioned within a vacuum chamber and irradiated with an ultraviolet light beam so that the material emits electrons by the photoelectric effect. The electrons have kinetic energies which are variable according to the electrical potential of the surface of the material. Emitted electrons having kinetic energies within a predetermined range are selected by an electron energy analyzer. An electron detector receives the selected electrons and produces electrical signals corresponding to the energies of said selected electrons. In another embodiment of the invention, a modulated light beam other than the ultraviolet light probe beam irradiates the material in order to produce time varying modulation of the photoelectron energy spectrum.
Abstract:
A method is disclosed for determining characteristics of semi-insulating lium arsenide that can be used to evaluate the suitability of the material for semiconductor processing. An n-channel test device formed on a substrate of semi-insulating gallium arsenide is illuminated with pulses of light. The decay in the photoconductance that occurs due to the illumination is measured in order to enable characterization of the shallow acceptor impurities which compensate the deep donors in the semi-insulating gallium arsenide.
Abstract:
A method is provided for forming a multi-cell photovoltaic circuit on an insulating substrate, comprising the steps of: forming a photovoltaic junction between p-type and n-type layers in a silicon wafer; bonding the silicon wafer to an insulating substrate after forming the photovoltaic junction; patterning the silicon wafer to produce isolated photovoltaic cells; and electrically interconnecting the photovoltaic cells.
Abstract:
An optically powered photomultiplier tube is provided, comprising a vacuum chamber having a window for incident optical radiation which is to be detected; a photocathode to receive the optical radiation; an electron multiplier system within the chamber to amplify the electron current from the photocathode; an anode to receive the amplified electron current; a high voltage photocell array positioned within the chamber for generating high voltage electrical power that is provided to the electron multiplier system; a system for delivering optical power to the photocell array; a first electrical contact penetrating the container in a vacuum tight manner and operably coupled to the anode; and a second electrical contact penetrating the container in a vacuum tight manner and operably coupled to the photocell array.
Abstract:
An apparatus for testing infrared detectors in response to a selectively controlled electron beam within a cryogenically shielded environment includes a cryostat having an aperture which is positioned adjacent to a scanning electron microscope. An electron beam emitted from the microscope propagates through the aperture to illuminate an infrared detector mounted within the cryostat so that the detector can be tested in an environment substantially free of spurious infrared radiation.
Abstract:
An apparatus for testing infrared detector response to ionizing radiation within an infrared shielded environment includes a cryostat having an aperture which is positioned adjacent to a scanning electron microscope (SEM). The SEM generates an electron beam which propagates through the aperture and is absorbed by a foil positioned adjacent the detector. The interaction of the electron beam with the foil produces X-rays which irradiate the detector. Instruments electrically coupled to the detector record and display the detector response.
Abstract:
A process and apparatus are disclosed for remotely determining electrical properties of a semiconductor. A surface of the semiconductor is simultaneously irradiated with an electron beam to generate secondary electrons from the irradiated surface and with a modulated light beam. Secondary electrons emitted by the semiconductor are filtered by an electron energy analyzer. An electron detector receives the filtered electrons and provides an output corresponding to electrical properties of the irradiated area. The output is provided to a computer which calculates the difference in output between periods when the semiconductor is being illuminated with the light beam and when it is not so illuminated. The time dependence of the output may also be measured.