摘要:
One inventive aspect relates to a method for fabricating a high-k dielectric layer. The method comprises depositing onto a substrate a layer of a high-k dielectric material having a first thickness. The high-k dielectric material has a bulk density value and the first thickness is so that the high-k dielectric layer has a density of at least the bulk density value of the high-k dielectric material minus about 10%. The method further comprises thinning the high-k dielectric layer to a second thickness. Another inventive aspect relates to a semiconductor device comprising a high-k dielectric layer as fabricated by the method.
摘要:
One inventive aspect relates to a method for fabricating a high-k dielectric layer. The method comprises depositing onto a substrate a layer of a high-k dielectric material having a first thickness. The high-k dielectric material has a bulk density value and the first thickness is so that the high-k dielectric layer has a density of at least the bulk density value of the high-k dielectric material minus about 10%. The method further comprises thinning the high-k dielectric layer to a second thickness. Another inventive aspect relates to a semiconductor device comprising a high-k dielectric layer as fabricated by the method.
摘要:
The present disclosure relates to methods for forming a gate stack in a MOSFET device and to MOSFET devices obtainable through such methods. In exemplary methods described herein, a rare-earth-containing layer is deposited on a layer of a silicon-containing dielectric material. Before these layers are annealed, a gate electrode material is deposited on the rare-earth-containing layer. Annealing is performed after the deposition of the gate electrode material, such that a rare earth silicate layer is formed.
摘要:
A method for manufacturing a dual work function device is disclosed. In one aspect, the process includes a first and second region in a substrate. The method includes forming a first transistor in the first region which has a first work function. Subsequently, a second transistor is formed in the second region having a different work function. The process of forming the first transistor includes providing a first gate dielectric stack having a first gate dielectric layer and a first gate dielectric capping layer on the first gate dielectric layer, performing a thermal treatment to modify the first gate dielectric stack, the modified first gate dielectric stack defining the first work function, providing a first metal gate electrode layer on the modified first gate dielectric stack, and patterning the first metal gate electrode layer and the modified first gate dielectric stack.
摘要:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
摘要:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
摘要:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
摘要:
A new MOSFET device is described comprising a metal gate electrode, a gate dielectric and an interfacial layer. The interfacial layer comprises a lanthanum hafnium oxide material for modulating the effective work function of the metal gate. The gate dielectric material in contact with the interfacial layer is different that the interfacial layer material. A method for its manufacture is also provided and its applications.
摘要:
A new MOSFET device is described comprising a metal gate electrode, a gate dielectric and an interfacial layer. The electrostatic potential at an interface between the gate electrode and the gate dielectric of a MOSFET device can be controlled by introducing one or more interfacial layer(s) of a dielectric material, at the monolayer(s) level (i.e., preferably two monolayers), between the gate electrode and the gate dielectric. A method for its manufacture is also provided and its applications.
摘要:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.